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Overview

FiPy is an object oriented, partial differential equation (PDE) solver, written in Python [1], based on a
standard finite volume (FV) approach. The framework has been developed in the Metallurgy Division
and Center for Theoretical and Computational Materials Science (CTCMS), in the Materials Science and
Engineering Laboratory (MSEL) at the National Institute of Standards and Technology (NIST).
The solution of coupled sets of PDEs is ubiquitous to the numerical simulation of science problems. Numerous
PDE solvers exist, using a variety of languages and numerical approaches. Many are proprietary, expensive
and difficult to customize. As a result, scientists spend considerable resources repeatedly developing limited
tools for specific problems. Our approach, combining the FV method and Python, provides a tool that is
extensible, powerful and freely available. A significant advantage to Python is the existing suite of tools for
array calculations, sparse matrices and data rendering.
The FiPy framework includes terms for transient diffusion, convection and standard sources, enabling the
solution of arbitrary combinations of coupled elliptic, hyperbolic and parabolic PDEs. Currently imple-
mented models include phase field [2, 3, 4] treatments of polycrystalline, dendritic, and electrochemical
phase transformations as well as a level set treatment of the electrodeposition process [5].
The latest information about FiPy can be found at http://www.ctcms.nist.gov/fipy/.

1.1 Even if you don’t read manuals...

...please read Chapter 2 “Installation and Usage” and Chapter 6 “Frequently Asked Questions”.

1.2 What’s new in version 1.2.2

The significant changes since version 1.1 are:

• --inline automatically generates C code from Variable expressions.

• FiPy has been updated to use the Python NumPy module. FiPy no longer works with the older Numeric
module.

1.3 Download and Installation

Please refer to Chapter 2 “Installation and Usage” for details on download and installation. FiPy can be
redistributed and/or modified freely, provided that any derivative works bear some notice that they are
derived from it, and any modified versions bear some notice that they have been modified.

1.4 Support

You can communicate with the FiPy developers and with other users via our mailing list and we welcome
you to use the tracking system for bugs, support requests, feature requests and patch submissions [6, 7]. We
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10 1. Overview

welcome collaborative efforts on this project.
FiPy is a member of MatForge, a project of the Materials Digital Library Pathway. This National Science
Foundation funded service provides management of our public source code repository, our bug tracking
system, and a “wiki” space for public contributions of code snippets, discussions, and tutorials.

1.5 Conventions and Notation

FiPy is driven by Python script files than you can view or modify in any text editor. FiPy sessions are invoked
from a command-line shell, such as tcsh or bash.
Throughout, text to be typed at the keyboard will appear like this. Commands to be issued from an
interactive shell will appear:

$ like this

where you would enter the text (“like this”) following the shell prompt, denoted by “$”.
Text blocks of the form:

>>> a = 3 * 4
>>> a
12
>>> if a == 12:
... print "a is twelve"
...
a is twelve

are intended to indicate an interactive session in the Python interpreter. We will refer to these as “interactive
sessions” or as “doctest blocks”. The text “>>>” at the beginning of a line denotes the primary prompt,
calling for input of a Python command. The text “...” denotes the secondary prompt, which calls for input
that continues from the line above, when required by Python syntax. All remaining lines, which begin at the
left margin, denote output from the Python interpreter. In all cases, the prompt is supplied by the Python
interpreter and should not be typed by you.

Warning

Python is sensitive to indentation and care should be taken to enter text exactly as it appears in the examples.

When references are made to file system paths, it is assumed that the current working directory is the FiPy
distribution directory, refered to as the “base directory”, such that:

examples/diffusion/steadyState/mesh1D/input.py

will correspond to, e.g.:

/some/where/FiPy-1.0/examples/diffusion/steadyState/mesh1D/input.py

Paths will always be rendered using POSIX conventions (path elements separated by “/”). Any references
of the form:

examples.diffusion.steadyState.mesh1D.input

are in the Python module notation and correspond to the equivalent POSIX path given above.
We may at times use a

http://matforge.org/
http://matdl.org
http://www.python.org/
http://www.python.org/
http://www.python.org/
http://www.python.org/
http://www.python.org/
http://www.python.org/
http://www.python.org/
http://www.python.org/
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Note

to indicate something that may be of interest

or a

Warning

to indicate something that could cause serious problems.

1.6 Mailing List

In order to discuss FiPy with other users and with the developers, we encourage you to sign up for the mailing
list by sending a subscription email:

To: listproc@nist.gov

Subject: (optional)

Body: subscribe fipy Your Name

Once you are subscribed, you can post messages to the list simply by addressing email to mailto:fipy@nist.gov.
If you are new to mailing lists, you may want to read the following resource about asking effective questions:
http://www.catb.org/˜esr/faqs/smart-questions.html
To get off the list follow the instructions above, but place unsubscribe fipy in the text body.

List Archive

http://dir.gmane.org/gmane.comp.python.fipy
The mailing list archive is hosted by GMANE. Any mail sent to fipy@nist.gov will appear in this publicly
available archive.

mailto:listproc@nist.gov?&body=subscribe%20fipy%20!!!YOUR%20NAME%20HERE!!!
mailto:fipy@nist.gov
http://www.catb.org/~esr/faqs/smart-questions.html
http://dir.gmane.org/gmane.comp.python.fipy
http://dir.gmane.org/gmane.comp.python.fipy
http://gmane.org/
mailto:fipy@nist.gov
http://dir.gmane.org/gmane.comp.python.fipy
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The FiPy finite volume PDE solver relies on several third-party packages. It is best to obtain and install
those first, before attempting to install FiPy.

Note

Most of the installation steps will involve a variant on the command:

$ python setup.py ...

In addition to the specific commands given here, further information about each setup.py script is available
by typing:

$ python setup.py --help

For each package, please follow any instructions given in its README or INSTALLATION files.
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2.1 Privileges

If you do not have administrative privileges on your computer, or if for any reason you don’t want to
tamper with your existing Python installation, most packages (including FiPy) will allow you to install to
an alternate location. Instead of installing these packages with python setup.py install, you would use
python setup.py install --home=<dir>, where <dir> is the desired installation directory (usually “~”
to indicate your home directory). You will then need to append <dir>/lib/python to your PYTHONPATH
environment variable. See the Alternate Installation section of the Python document “Installing Python
Modules” [8] for more information, such as circumstances in which you should use --prefix instead of
--home.

2.2 Prerequisites

Operating System

FiPy has been developed and tested on the following operating systems, Mac OS X 10.3 “Panther” & 10.4
“Tiger”, Debian Linux 3.1 “Sarge”, Windows XP and Windows 2000. We welcome reports of compatibility
with other systems, along with any steps necessary to install.

Note

Simple instructions for Mac OS X users are in Section 2.7 “Mac OS X Installation”. Simple instructions for
Windows users are in Section 2.8 “Windows Installation”.

The only elements of FiPy that are likely to be platform-dependent are the viewers, but at least one viewer
should work on each platform. All other aspects should function on any platform that has a recent Python
installation.
Many of the packages listed below have prebuilt installers for different platforms (particularly for Windows).
These installers can save considerable time and effort compared to configuring and building from source,
although they frequently comprise somewhat older versions of the respective code. Whether building from
source or using a prebuilt installer, please read and follow explicitly any instructions given in the respective
packages’ README and INSTALLATION files.

Required Packages

Warning

FiPy will not run if the following items are not installed.

Python

http://www.python.org/
FiPy is written in the Python language and requires a Python installation to run. Python comes pre-installed
on many operating systems, which you can check by opening a terminal and typing python, e.g.:

$ python
Python 2.3 (#1, Sep 13 2003, 00:49:11)
...
Type "help", "copyright", "credits" or "license" for more information.
>>>

If necessary, you can download and install it for your platform [9].

http://www.python.org/
http://docs.python.org/inst/alt-install-windows.html
http://www.python.org/
http://docs.python.org/inst/
http://docs.python.org/inst/
http://www.apple.com/macosx/
http://www.debian.org/
http://www.microsoft.com/windowsxp/
http://www.microsoft.com/windows2000/
http://www.apple.com/macosx/
http://www.microsoft.com/windows/
http://www.python.org/
http://www.python.org/
http://www.python.org/
http://www.python.org/
http://www.python.org/
http://www.python.org/download/
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Note

FiPy requires at least version 2.3 of Python and has not yet been tested with version 2.5.

NumPy

http://sourceforge.net/projects/numpy/
Obtain and install the NumPy package. FiPy requires at least version 1.0 of NumPy.

Attention!

FiPy no longer uses the older Numeric or numarray packages.

PySparse

http://pysparse.sourceforge.net
FiPy requires Roman Geus’ PySparse package.
You can download the PySparse archive or check it out via anonymous CVS download:

$ cvs -d:pserver:anonymous@pysparse.cvs.sourceforge.net:/cvsroot/pysparse login

and press enter at the password prompt, then:

$ cvs -z3 -d:pserver:anonymous@pysparse.cvs.sourceforge.net:/cvsroot/pysparse \
> checkout pysparse

From within the pysparse base directory, follow its included instructions for building PySparse for your
platform. PySparse Windows installers are available.

Note

Windows users who choose to build from source should pay particular attention to the instructions in the
INSTALL file in the base PySparse directory.

Warning

If pysparse is installed in a local directory a further path may have to be added to the PYTHONPATH
environment variable. For example, if

$ python setup.py install --home=/some/directory/some/where

then both /some/directory/some/where and /some/directory/some/where/lib/python are required to be
added to the PYTHONPATH. e.g.

$ set PYTHONPATH=/some/directory/some/where:/some/directory/some/where/lib/python

Warning

FiPy requires version 1.0 or higher of PySparse.

Viewers

FiPy will work perfectly well without them, but at least one of the following packages will be required to
view the results of FiPy calculations. FiPy will select the first viewer that is available from the list below.
If more than one is installed, specify a viewer by setting the FIPY VIEWER environment variable to either
“gist”, “gnuplot” or “matplotlib”.

http://www.python.org/
http://sourceforge.net/projects/numpy/
http://www.scipy.org/NumPy
http://www.scipy.org/NumPy
http://sourceforge.net/project/showfiles.php?group_id=1369&package_id=1351
http://www.stsci.edu/resources/software_hardware/numarray
http://pysparse.sourceforge.net
http://people.web.psi.ch/geus/
http://pysparse.sourceforge.net
http://sourceforge.net/project/showfiles.php?group_id=101403
http://pysparse.sourceforge.net
http://sourceforge.net/project/showfiles.php?group_id=101403
http://pysparse.sourceforge.net
http://pysparse.sourceforge.net
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Matplotlib

http://matplotlib.sourceforge.net
Matplotlib is a Python package that displays publication quality results. It displays both 1D X-Y type plots
and 2D contour plots for structured data. It does not display unstructured 2D data or 3D data. It works
on all common platforms and produces publication quality hard copies. Version 0.72.1 or higher is required.
Matplotlib installers for specific platforms are available [10].

Note

Matplotlib is noticeably slower than Pygist or Gnuplot.py, but has superior image rendering and plotting
functionality.

Gnuplot-py

http://gnuplot-py.sourceforge.net
Gnuplot.py is a Python package that interfaces to gnuplot, the popular open-source plotting program. It
displays both 1D X-Y type plots and 2D contour plots for structured data but not for unstructured data
or 3D data. It works on all common platforms and produces hard copies, however, it sometimes breaks on
Windows. As a general remark, the viewing quality using either Pygist or Matplotlib is preferable.

Pygist

http://hifweb.lbl.gov/public/software/gist/
The Pygist package can be used to display simulation results. It displays both 1D X-Y type plots and 2D
contour plots for both structured and unstructured data. It does not display 3D data. Although stated as
working on Windows, it does not seem to do a good job of rendering on this platform. Pygist works fine on
other common platforms. Pygist no longer seems to be under development, but is still recommended as a
fast light weight alternative to Matplotlib.

Attention!

Pygist requires the old Numeric module to be installed.

Warning

The facility to produce hard copies in Pygist does not work very well and may crash the FiPy run. “.eps” and
“.cgm” export seem to work.

Note

If you experience difficulty building the native Pygist viewer on Mac OS X, you may wish to build the package
with the --x11 option described in its documentation.

Note

Pygist can have problems finding color pallets, such as “heat.gp” and “work.gs”, when installed locally. You
may need to set the GISTPATH environment variable to point to the directory containing these files (you may
find it as “g/” within the directory you specified for --home).

http://matplotlib.sourceforge.net
http://matplotlib.sourceforge.net
http://www.python.org/
http://sourceforge.net/project/showfiles.php?group_id=80706&package_id=82474
http://matplotlib.sourceforge.net
http://hifweb.lbl.gov/public/software/gist/
http://gnuplot-py.sourceforge.net
http://gnuplot-py.sourceforge.net
http://gnuplot-py.sourceforge.net
http://www.python.org/
http://gnuplot.sorceforge.net/
http://hifweb.lbl.gov/public/software/gist/
http://matplotlib.sourceforge.net
http://hifweb.lbl.gov/public/software/gist/
http://hifweb.lbl.gov/public/software/gist/
http://hifweb.lbl.gov/public/software/gist/
http://hifweb.lbl.gov/public/software/gist/
http://matplotlib.sourceforge.net
http://hifweb.lbl.gov/public/software/gist/
http://hifweb.lbl.gov/public/software/gist/
http://www.apple.com/macosx/
http://hifweb.lbl.gov/public/software/gist/
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MayaVi

http://mayavi.sourceforge.net
The MayaVi 1 Data Visualizer is a free, easy to use scientific data visualizer. It displays 1D, 2D and 3D data.
It is the only FiPy viewer available for 3D data. Other viewers are probably better for 1D or 2D viewing.

Warning

FiPy can only use MayaVi 1 to display 3D meshes consisting entirely of tetrahedrons or wedge elements. The
ordering of vertices for other mesh types may not work.

Note

Is is also necessary to install the PyVTK package to use the FiPy MayaVi viewers.

Note

MayaVi 1 is outdated and we hope to have compatilibiltiy with MayaVi 2 as soon as possible.

Optional Packages

Note

The following packages are not required to run FiPy, but they can be helpful.

SciPy

http://www.scipy.org/
Significantly improved performance has been achieved with the judicious use of C language inlining, via the
weave module of the SciPy package. SciPy download instructions [11] are available. We recommend version
0.5.2 or greater.

Note

A handful of test cases use functions from the SciPy library and will throw errors if it is missing.

gmsh

http://www.geuz.org/gmsh/
It is possible to create irregular meshes with this package.

Note

The Mac OS X distribution of gmsh provides a nice graphical tool, but is structured a bit differently than on
other platforms. To access the underlying shell tool, create a shell alias called gmsh that corresponds to <Gmsh
path>/Gmsh.app/Contents/MacOS/Gmsh.

2.3 Obtaining FiPy

FiPy is freely available for download via Subversion or as a compressed archive [12]. To obtain FiPy via
anonymous Subversion, issue the following command:

$ svn checkout http://matforge.org/svn/fipy/tags/CURRENT

http://mayavi.sourceforge.net
http://mayavi.sourceforge.net
http://mayavi.sourceforge.net
http://cens.ioc.ee/projects/pyvtk/
http://mayavi.sourceforge.net
http://code.enthought.com/projects/mayavi
http://www.scipy.org/
http://www.scipy.org/documentation/weave/
http://www.scipy.org/
http://www.scipy.org/Download
http://www.scipy.org/
http://www.geuz.org/gmsh/
http://www.apple.com/macosx/
http://matforge.org/fipy/browser
http://www.ctcms.nist.gov/fipy/download/
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This will download a fairly stable version of FiPy (somewhere between version 1.2.2 and HEAD). If you
prefer, you can download FiPy version 1.2.2 (recommended) with:

$ svn checkout http://matforge.org/svn/fipy/tags/STABLE

Further information about Subversion can be found in Section 2.9 and in the online Subversion Red Bean
book [13].

Warning

Keep in mind that if you choose to download the compressed archive you will then need to preserve your
changes when upgrades to FiPy become available (upgrades via Subversion will handle this issue
automatically).

Manual

You can download the latest manual [14]. Alternatively, it may be possible to build a fresh copy by issuing
the following command in the base directory:

$ python setup.py build docs --latex --manual

Note

This mechanism is intended primarily for the developers. A command-line pdfTeX installation and several
LATEX packages are required; particularly memoir.cls. You will also need to add ~/path/to/fipy/utils to
your PYTHONPATH environment variable.

2.4 Testing FiPy

From the base directory, you can verify that FiPy works properly by executing:

$ python setup.py test

Depending on the packages you chose to install in Optional Packages, be sure to set the appropriate envi-
ronment variables. You can expect a few errors if you did not install all of the recommended packages.
If you chose to install the weave package, you should rerun the tests with:

$ python setup.py test --inline

A few tests will fail the first time as a result of the messages output in the course of caching the compiled
inline code, but a repeat test should have no failures (although see “repairing catalog by removing key”
in Chapter 6 “Frequently Asked Questions”).

Note

In order for Python to find the FiPy modules, you will need to ensure that the base directory is added to your
PYTHONPATH environment variable, e.g.:

$ setenv PYTHONPATH .:${PYTHONPATH}

or:

$ export PYTHONPATH=.:${PYTHONPATH}

http://matforge.org/fipy/browser
http://svnbook.red-bean.com
http://svnbook.red-bean.com
http://www.ctcms.nist.gov/fipy/download/
http://matforge.org/fipy/browser
http://www.ctcms.nist.gov/fipy/download/
http://www.scipy.org/documentation/weave/
http://www.python.org/
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Attention!

Depending on your operating system and version of gmsh you may get failures in
examples.levelSet.electroChem.inputGold and examples.levelSet.electroChem.inputLeveler.
These are caused by the test being overly strict and are not cause for concern. The models are solved
accurately.

2.5 Installing FiPy

It is not necessary to formally install FiPy, but if you wish to do so and you are confident that all of the
requisite packages have been installed properly and FiPy passes its tests, you can install it by typing:

$ python setup.py install

at the command line. Alternatively, you may choose not to formally install FiPy and to simply work within
the base directory instead.
If you choose to install, Python will find your FiPy modules automatically. If you choose not to install, then
you will need to ensure that the FiPy distribution directory is appended to your PYTHONPATH environment
variable (either “.” if you are working within the FiPy directory, or “~/path/to/fipy” if you are working
in your own directory).

2.6 Using FiPy

To see examples of problems that FiPy is capable of solving, you can run any of the scripts in Part II
“Examples”. You can type, e.g.:

$ python examples/diffusion/steadyState/mesh1D/input.py

at the command line, which should produce a graphical display of the solution.
With judicious use of the weave package, we have been able to obtain significantly improved performance
for some problems, while keeping the code as clear as possible. You can invoke this faster code by passing
the --inline option at the command line, i.e.:

$ python examples/diffusion/steadyState/mesh1D/input.py --inline

Some modest speed efficiency gains can be made with the use of the --cache flag. This flag instructs FiPy
to trade memory for speed. This flag can be invoked with, e.g.:

$ python examples/diffusion/steadyState/mesh1D/input.py --inline --cache

In order to customize the examples, or to develop your own scripts, some knowledge of Python syntax is
required. We recommend you familiarize yourself with the excellent Python tutorial [15] or with Dive Into
Python [16].

http://www.python.org/
http://www.scipy.org/documentation/weave/
http://docs.python.org/tut/tut.html
http://diveintopython.org
http://diveintopython.org
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2.7 Mac OS X Installation

We present two comparatively simple routes to installing FiPy on Mac OS X. The Fink Installation procedure
is appropriate if you are already familiar with the Fink package manager. The Binary Installation procedure
is the most expedient if you have never heard of Fink or if you are not comfortable with it. Please see the
more general Chapter 2 “Installation and Usage” for detailed installation instructions. These instructions are
not the only ways to set up FiPy on Mac OS X but represent the most expedient ways, from our experience,
to have a usable installation up and running.

Attention!

You must have an administrator account to install most of the following packages.

Binary Installation

Attention!

Choose this method if you have never heard of Fink or if you are not comfortable with it for any reason. Binary
installation is the fastest way to get FiPy up and running, but may offer less flexibility in the long run.

Note

If you wish to view 3D models, the MayaVi viewer is required, which is best installed via Fink, so you should
follow the Fink Installation instructions.

Pre-built binaries for many of the required packages are available at http://pythonmac.org/packages/py24-
fat/.

Python

Python is pre-installed on Mac OS X, but installation of other packages is much easier if you upgrade
to the latest version of python-2.4.X-XXXX-XX-XX.dmg from pythonmac (or possibly some variant on
Universal-MacPython-2.4.X-XXXX-XX-XX.dmg). Your existing installation will not be harmed.

Note

Any command-line instructions that start with python will either need to be explicitly typed as
/usr/local/bin/python or you will need to adjust your $path variable so that this version of python is
found before the pre-installed version.

Note

Another option is ActivePython, which probably is the most heavily supported installation on the Mac, but
seems to lack readline support, but these instructions

http://www.friday.com/bbum/2006/03/06/python-mac-os-x-and-readline/

worked for us.

NumPy

Download and install the latest version of numpy-X.XX-py2.4-macosx10.4.mpkg.zip from pythonmac.

http://www.apple.com/macosx/
http://fink.sourceforge.net
http://fink.sourceforge.net
http://www.apple.com/macosx/
http://fink.sourceforge.net
http://fink.sourceforge.net
http://pythonmac.org/packages/py24-fat/
http://pythonmac.org/packages/py24-fat/
http://www.apple.com/macosx/
http://pythonmac.org/packages/py24-fat/
http://www.activestate.com/Products/ActivePython/
http://www.friday.com/bbum/2006/03/06/python-mac-os-x-and-readline/
http://pythonmac.org/packages/py24-fat/


Fink Installation 21

matplotlib

In order to see simulation results, you will need a viewer. We recommend you download and install the latest
version of matplotlib-X.XX.X-py2.4-macosx10.4.mpkg.zip from pythonmac.
matplotlib requires:

wxPython

Download and install the latest version of wxPythonX.X-osx-unicode-X.X.X.X-universal10.4-py2.4.dmg
from pythonmac.

PySparse

http://sourceforge.net/project/showfiles.php?group id=101403
Download and install the latest version of pysparse-X.XX.XXX.macosx-10.4-py24.dmg

FiPy

http://www.ctcms.nist.gov/fipy/
Download and unpack the source archive (FiPy-x.y.tar.gz).
From within the FiPy directory, execute the command-line instruction:

$ python setup.py build
$ sudo python setup.py install

Note

You may now choose to install Optional Packages or you may choose proceed directly to Using FiPy on Mac
OS X.

Fink Installation

Attention!

Choose this method if you are already familiar with Fink or with Linux package managers in general (such as
Debian packages or RPMs). Fink installation takes considerably longer than Binary Installation, but offers a
wealth of other programs that can make it worthwhile.

The Fink package manager automatically handles the many intricate dependencies involved in building open
source software. Fink is based on the Debian tools and the package manager model will be familiar to Linux
users.

Xcode Development Tools

http://developer.apple.com/tools/xcode
Some required packages are not available from Fink as binaries, so you will need to have the developer tools
for Mac OS X. They may already be installed in the /Developer/ directory, but a different version may be
required by Fink; see the recommendations at http://fink.sourceforge.net/download

Note

Free registration with the Apple Developer Connection is required.

http://pythonmac.org/packages/py24-fat/
http://pythonmac.org/packages/py24-fat/
http://sourceforge.net/project/showfiles.php?group_id=101403
http://www.ctcms.nist.gov/fipy/
http://fink.sourceforge.net
http://www.linux.org
http://www.debian.org
http://fink.sourceforge.net
http://fink.sourceforge.net
http://fink.sourceforge.net
http://www.debian.org
http://www.linux.org
http://developer.apple.com/tools/xcode
http://fink.sourceforge.net
http://www.apple.com/macosx/
http://fink.sourceforge.net
http://fink.sourceforge.net/download
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X11

Open the X11 application.
Set your $DISPLAY environment variable to :0.0.

Note

If the X11 application is not already present in the /Applications/Utilities/ directory, it should be
available as an optional package on the OS installation media that came with your computer.

Fink

http://fink.sourceforge.net/download
Ensure that Fink is installed and up to date for your OS.

Note

The following steps have been tested with Fink 0.8.1 on Mac OS X 10.4 “Tiger”. Variations may be necessary
for other OS versions.

unstable tree

Follow the directions at http://www.finkproject.org/faq/usage-fink.php#unstable

Note

We recommend that you accept all defaults presented by fink selfupdate.

Note

“unstable” is not as scary as it sounds. The Fink administrators tend to be very conservative about what
packages are designated “stable”.

Remaining Fink packages

Execute the following commands from Terminal application (you can use xterm or any other terminal
application of your choosing):

$ fink --use-binary-dist install python

Take note of the version of Python that gets installed (python --version). Many other packages, indicated
by a “-pyXX” suffix, require you substitute the Python version. E.g., Python 2.4 takes “-py24”, Python 2.5
takes “-py25”, and so on.

$ fink --use-binary-dist install matplotlib-pyXX

Attention!

The matplotlib installation will automatically download and build a number of other packages. This process
can take quite awhile. We recommend that you accept all defaults offered at the beginning of this process.

Note

If the installation of matplotlib-pyXX fails for some reason, we recommend you execute the install command
again.

http://fink.sourceforge.net/download
http://fink.sourceforge.net
http://fink.sourceforge.net
http://www.apple.com/macosx/
http://www.finkproject.org/faq/usage-fink.php#unstable
http://fink.sourceforge.net
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A few changes are needed to allow matplotlib to run:

$ mkdir ~/.matplotlib
$ curl http://matplotlib.sourceforge.net/matplotlibrc \
> ~/.matplotlib/matplotlibrc

You may now choose to either edit the “backend” configuration in ~/.matplotlib/matplotlibrc to read:

backend : TkAgg

or you can install wxPython with:

$ fink --use-binary-dist install wxpython-pyXX

(the second choice takes awhile, as it needs to build things).

PySparse installation

http://sourceforge.net/project/showfiles.php?group id=101403
Download and unpack the latest version of pysparse-X.XX.XXX.tar.gz
From within the PySparse directory, execute:

$ python setup.py build
$ sudo python setup.py install

FiPy installation

Install FiPy packages as explained above.

Note

You may now choose to install Optional Packages or you may choose proceed directly to Using FiPy on Mac
OS X.

Optional Packages

ipython

http://ipython.scipy.org/moin/Download
This interactive Python shell is nicer to use than the default, and integrates nicely with matplotlib. Download
the source and follow the building and installation instructions for Mac OS X.

Gmsh

http://www.geuz.org/gmsh
If you wish to run examples that have unstructured meshes, it is necessary to install Gmsh. Download and
unpack the latest version of Gmsh for Mac OS X. Create a link on your $path or a shell alias that points to
<Gmsh path>/Gmsh.app/Contents/MacOS/Gmsh.

Note

This is a required package for superfill examples.

http://sourceforge.net/project/showfiles.php?group_id=101403
http://ipython.scipy.org/moin/Download
http://www.apple.com/macosx/
http://www.geuz.org/gmsh
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MayaVi

MayaVi 1 is a requirement if you wish to view 3D problems or improve the viewing capabilities of the superfill
examples. This is one package that is probably much easier to install via Fink than by hand. You might
attempt to follow the instructions at http://mayavi.sourceforge.net/mwiki/BuildingVTKOnOSX but they
are quite out of date and did not work for us.
If you have already followed the Fink Installation instructions, then you can go to the command line and
type:

$ sudo apt-get install mayavi-pyXX

Note

MayaVi 1 is outdated and we hope to have compatilibiltiy with MayaVi 2 as soon as possible.

SciPy

http://www.scipy.org/
This is a very powerful set of tools that augments the capabilities of FiPy. Although not required for using
FiPy, some tests will fail if it is not present:

• If you followed the Binary Installation procedure, there are a few different choices for ob-
taining prebuilt binaries of SciPy, each with their own issues:

– We presently recommend obtaining SciPy from the ScipySuperpack

Warning

We do not recommend installing the other components from the
ScipySuperpack. In particular, matplotlib was not usable when we tried it.

– pythonmac includes a build of SciPy, but the latest version we tried from
pythonmac, scipy-0.5.1-py2.4-macosx10.4.mpkg.zip (MD5: 15daecd1b5709f04a41154102269359f),
was apparently not linked correctly and does not work properly, c.f.

http://projects.scipy.org/pipermail/scipy-user/2007-January/010820.html
– We may provide builds of SciPy from our own site if we conclude that we can

better serve FiPy users that way.

• If you followed the Fink Installation procedure, then you should be able to type:

$ sudo apt-get install scipy-pyXX

Note

You are now ready to proceed to Using FiPy on Mac OS X.

Using FiPy on Mac OS X

We do a substantial amount of our FiPy development on Mac OS X, so you can assume that it is well-
tested on this platform. We exlusively use the unix command line to interact with FiPy. The commands in
Part II “Examples” are written with the assumption that they will be executed from the command line. For
instance, from within the main FiPy directory, you can type:

$ python examples/diffusion/mesh1D.py

A matplotlib viewer should appear and you should be prompted through a series of examples.

http://mayavi.sourceforge.net
http://fink.sourceforge.net
http://mayavi.sourceforge.net/mwiki/BuildingVTKOnOSX
http://mayavi.sourceforge.net
http://code.enthought.com/projects/mayavi
http://www.scipy.org/
http://trichech.us/?page_id=4
http://trichech.us/?page_id=4
http://pythonmac.org/packages/py24-fat/
http://pythonmac.org/packages/py24-fat/
http://projects.scipy.org/pipermail/scipy-user/2007-January/010820.html
http://www.ctcms.nist.gov/fipy/download/
http://www.apple.com/macosx/
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Note

We strongly recommend you proceed through Part II “Examples”, but at the very least work through
Section 7.1 “Module examples.diffusion.mesh1D” to understand the notation and basic concepts of FiPy.

IDLE Environment

For those that are averse to the command line, the IDLE environment is installed by the pythonmac Python
installer and will appear in the MacPython 2.4 folder of the Applications folder.

Note

We are not aware of a Fink package for IDLE.

Attention!

We have no experience with using the IDLE environment on Mac OS X, but the following steps do work.

You can use the IDLE file browser to open the examples and run the module.

• Open the IDLE application, located in /Applications/MacPython 2.4/

• Select the Python Shell window. You can close the Console window if it appears.

• Choose File > Open

• Select /Path/To/Base/FiPy/Directory/examples/diffusion/mesh1D.py and click the Open
button

The script will open in an editor window.

• Choose Run > Run Module

A matplotlib viewer should appear and the Python Shell should prompt you through a series of examples.
Another way to use FiPy examples is to import the example file and then run any functionality it may have.
For example, execute the following commands in the Python Shell:

>>> import sys
>>> sys.path.append(’\Path\To\Base\FiPy\Directory’)
>>> from examples.levelSet.electroChem.inputGold import runGold
>>> runGold(numberOfSteps = 100)

If you have installed the optional packages, a viewer should appear with a trench filling simulation.

http://www.python.org/idle/
http://pythonmac.org/packages/py24-fat/
http://fink.sourceforge.net
http://www.python.org/idle/
http://www.python.org/idle/
http://www.apple.com/macosx/
http://www.python.org/idle/
http://www.python.org/idle/
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2.8 Windows Installation

These instructions are for the Windows XP and Windows 2000 platforms. Please see the more general
Chapter 2 “Installation and Usage” for detailed installation instructions. These instructions are not the only
way to set up FiPy on a Windows OS but represent the most expedient way from our experience to have a
usable installation up and running.

Required Packages

Python

http://www.pythonxy.com
http://www.enthought.com
We recommend the use of either Enthought Python or Python(x,y). These versions of Python have some of
the prerequisite packages for FiPy already included. Download and install the latest version.

PySparse

http://sourceforge.net/project/showfiles.php?group id=101403
Download and install the latest version of PySparse for Windows (pysparse-x.y.z.win32-py2.X.exe). Be sure
to select the version compiled with the correct version of Python to match the Python installation.

FiPy

http://www.ctcms.nist.gov/fipy/download/
Download and unpack the zip file (FiPy-x.y.win32.zip). Run the FiPy installer FiPy-x.y.win32.exe,
which is in the base FiPy-x.y directory.

Optional Packages

Gmsh

http://www.geuz.org/gmsh
If you wish to run examples that have unstructured meshes, it is necessary to install Gmsh. Download and
unpack the latest version of Gmsh for Windows. Open the unpacked folder with a browser and make sure
that gmsh.exe is placed somewhere on the execution path.

PyVTK

http://www.ctcms.nist.gov/fipy/download/
If you wish to use MayaVi 1, PyVTK is a requirement. Download and install the latest version from the
FiPy downloads page (PyVTK-x.y.z.win32.exe).

MayaVi

http://mayavi.sourceforge.net
MayaVi 1 is a requirement if you wish to view 3D problems or improve the viewing capabilities of the superfill
examples. Download the source code and run python setup.py install to install from the python source
in order for import mayavi to work at the command line.

http://www.microsoft.com/windowsxp/
http://www.microsoft.com/windows2000/
http://www.microsoft.com/windows/
http://www.pythonxy.com
http://www.enthought.com
http://www.enthought.com
http://www.pythonxy.com
http://www.python.org/
http://sourceforge.net/project/showfiles.php?group_id=101403
http://www.microsoft.com/windows/
http://www.python.org/
http://www.python.org/
http://www.ctcms.nist.gov/fipy/download/
http://www.geuz.org/gmsh
http://www.ctcms.nist.gov/fipy/download/
http://mayavi.sourceforge.net
http://www.ctcms.nist.gov/fipy/download
http://mayavi.sourceforge.net
http://mayavi.sourceforge.net
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Warning

At the time of writing the import mayavi command is not working with the python(x,y) version of python.

Note

MayaVi 1 is outdated and we hope to have compatilibiltiy with MayaVi 2 as soon as possible.

Using FiPy on Windows

A number of interactive python environments are available such as the IDLE and Ipython environments.
The following videos may be useful for explaining the use of Ipython on Windows:
http://showmedo.com/videos/series?name=PythonIPythonSeries

Testing

If you have a working copy of the source, not an installed version of FiPy, you can run the tests using Ipython
from the base FiPy directory, by typing

>>> run setup.py test

in the Ipython shell.

Running Examples

To run the FiPy examples in Ipython simply use the run command:

>>> run examples/diffusion/mesh20x20.py

2.9 Subversion tags

All stages of FiPy development are archived in a Subversion (SVN) repository at MatForge. You can browse
through the code at http://matforge.org/fipy/browser and, using an SVN client, you can download various
tagged revisions of FiPy depending on your needs.

Attention!

Be sure to follow Chapter 2 “Installation and Usage” to obtain all the prerequisites for FiPy.

2.10 SVN client

An svn client application is needed in order to fetch files from our repository. This is provided on many
operating systems (try executing which svn) but needs to be installed on many others. The sources to
build Subversion, as well as links to various pre-built binaries for different platforms, can be obtained from
http://subversion.tigris.org.

Mac OS X client

You can obtain a binary installer of svn from

http://www.codingmonkeys.de/mbo/

Alternatively, if you are using Fink, then you can execute the command:

http://www.pythonxy.com
http://www.python.org/
http://mayavi.sourceforge.net
http://code.enthought.com/projects/mayavi
http://www.python.org/idle/doc/idlemain.html
http://ipython.scipy.org
http://ipython.scipy.org
http://showmedo.com/videos/series?name=PythonIPythonSeries
http://ipython.scipy.org
http://ipython.scipy.org
http://ipython.scipy.org
http://matforge.org/fipy
http://matforge.org/fipy/browser
http://subversion.tigris.org
http://www.codingmonkeys.de/mbo/
http://fink.sourceforge.net
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$ sudo apt-get install svn-client

If you prefer a GUI, after you install svn, you can obtain svnX from

http://www.lachoseinteractive.net/en/community/subversion/svnx

2.11 SVN tags

In general, most users will not want to download the very latest state of FiPy, as these files are subject to
active development and may not behave as desired. Most users will not be interested in particular version
numbers either, but instead with the degree of code stability. Different “tracking tags” are used to indicate
different stages of FiPy development. You will need to decide on your own risk tolerance when deciding
which stage of development to track.
A fresh copy of FiPy that is designated by a particular <tag> can be obtained with:

$ svn checkout http://matforge.org/svn/fipy/<tag>

An existing SVN checkout of FiPy can be shifted to a different state of development by issuing the command:

$ svn switch http://matforge.org/svn/fipy/<tag> .

in the base directory of the working copy. The main tags (<tag>) for FiPy, in decreasing order of stability,
are:

tags/STABLE designates the most recent release in the repository that can be considered stable for daily use
by the common user. This is a good tag to track if you don’t want to run into bugs introduced with
ongoing development but would like to take advantage of new features as soon as possible.

tags/CURRENT designates the most recent code on the trunk forming a coherent state of FiPy, in general this
will mean a release, but can also mean a pre-release testing version. For instance, the release engineer
might ask testers to test tags/CURRENT before he makes a release.

trunk designates the latest revision of any file present in the repository. FiPy is not guaranteed to pass its
tests or to be in a consistent state when checked out under this tag.

In addition:

tags/version-x y designates a released version x.y. Any released version of FiPy will be designated with
a fixed tag: The current version of FiPy is 1.2.2.

branches/branch-version-x y designates a line of development based on a previously released version (i.e.,
if current development work is being spent on version 0.2, but a bug is found and fixed in version 0.1,
that fix will be tagged as version-0 1 1, and can be obtained from branch-version-0 1).

Any other tags will not generally be of interest to most users.
For those who are interested in learning more about Subversion, the canonical manual is the online Subversion
Red Bean book [13].

http://www.lachoseinteractive.net/en/community/subversion/svnx
http://svnbook.red-bean.com
http://svnbook.red-bean.com


Theoretical and Numerical Background

This chapter describes the numerical methods used to solve equations in the FiPy programming environ-
ment. FiPy uses the finite volume method (FVM) to solve coupled sets of partial differential equations
(PDEs). For a good introduction to the FVM see Nick Croft’s PhD thesis [17], Patanker [18] or Versteek
and Malalasekera [19].
Essentially, the FVM consists of dividing the solution domain into discrete finite volumes over which the
state variables are approximated with linear or higher order interpolations. The derivatives in each term of
the equation are satisfied with simple approximate interpolations in a process known as discretization. The
(FVM) is a popular discretization technique employed to solve coupled PDEs used in many application areas
(e.g. Fluid Dynamics).
The FVM can be thought of as a subset of the Finite Element Method (FEM), just as the Finite Difference
Method (FDM) is a subset of the FVM. A system of equations fully equivalent to the FVM can be obtained
with the FEM using as weighting functions the characteristic functions of FV cells, i.e., functions equal to
unity [20]. Analogously, the the discretization of equations with the FVM reduces to the FDM on Cartesian
grids.

3.1 General Conservation Equation

The equations that model the evolution of physical, chemical and biological systems often have a remarkably
universal form. Indeed, PDEs have proven necessary to model complex physical systems and processes
that involve variations in both space and time. In general, given a variable of interest φ such as species
concentration, pH, or temperature, there exists an evolution equation of the form

∂φ

∂t
= H(φ, λi) (3.1)

where H is a function of φ, other state variables λi, and higher order derivatives of all of these variables.
Examples of such systems are wide ranging, but include problems that exhibit a combination of diffusing and
reacting species, as well as such diverse problems as determination of the electric potential in heart tissue,
of fluid flow, stress evolution, and even the Schrödinger equation.
A general conservation equation, solved using FiPy, can include any combination of the following terms,

∂(ρφ)
∂t︸ ︷︷ ︸

transient

= ∇ · (~uφ)︸ ︷︷ ︸
convection

+ [∇ · (Γi∇)]n φ︸ ︷︷ ︸
diffusion

+ Sφ︸︷︷︸
source

(3.2)

where ρ, ~u and Γi represent coefficients in the transient, convection and diffusion terms, respectively. These
coefficients can be arbitrary functions of any parameters or variables in the system. The variable φ represents
the unknown quantity in the equation. The diffusion term can represent any higher order diffusion-like term,
where the order is given by the exponent n. For example, the diffusion term can represent conventional
Fickean diffusion [i.e., ∇·(Γ∇φ)] when the exponent n = 1 or a Cahn-Hilliard term [i.e., ∇·(Γ1∇[∇·Γ2∇φ)])
[21, 22, 23]] when n = 2. Of course, higher order terms (n > 2) are also possible.
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Figure 3.1: A mesh consists of cells, faces and vertices. For the purposes of FiPy, the divider between two
cells is known as a face for all dimensions.

3.2 Finite Volume Method

To use the FVM, the solution domain must first be divided into non-overlapping polyhedral elements or
cells. A solution domain divided in such a way is generally known as a mesh (as we will see, a Mesh is also
a FiPy object). A mesh consists of vertices, faces and cells (see Figure 3.1). In the FVM the variables of
interest are averaged over control volumes (CVs). The CVs are either defined by the cells or are centered on
the vertices.

Cell Centered FVM (CC-FVM)

In the CC-FVM the CVs are formed by the mesh cells with the cell center “storing” the average variable value
in the CV, (see Figure 3.2). The face fluxes are approximated using the variable values in the two adjacent
cells surrounding the face. This low order approximation has the advantage of being efficient and requiring
matrices of low band width (the band width is equal to the number of cell neighbors plus one) and thus low
storage requirement. However, the mesh topology is restricted due to orthogonality and conjunctionality
requirements. The value at a face is assumed to be the average value over the face. On an unstructured
mesh the face center may not lie on the line joining the CV centers, which will lead to an error in the face
interpolation. FiPy currently only uses the CC-FVM.

Vertex Centered FVM (VC-FVM)

In the VC-FVM, the CV is centered around the vertices and the cells are divided into sub-control volumes
that make up the main CVs (see Figure 3.2). The vertices “store” the average variable values over the
CVs. The CV faces are constructed within the cells rather than using the cell faces as in the CC-FVM. The
face fluxes use all the vertex values from the cell where the face is located to calculate interpolations. For
this reason, the VC-FVM is less efficient and requires more storage (a larger matrix band width) than the
CC-FVM. However, the mesh topology does not have the same restrictions as the CC-FVM. FiPy does not
have a VC-FVM capability.

3.3 Discretization

The first step in the discretization of Equation (3.2) using the CC-FVM is to integrate over a CV and then
make appropriate approximations for fluxes across the boundary of each CV. In this section, each term in
Equation (3.2) will be examined separately.
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Figure 3.2: CV structure for an unstructured mesh, (a) Ωa represents a vertex-based CV and (b) Ω1, Ω2,
Ω3 and Ω4 represent cell centered CVs.

Transient Term

For the transient term, the discretization of the integral
∫
V

over the volume of a CV is given by

∫
V

∂(ρφ)
∂t

dV ' (ρPφP − ρold
P φold

P )VP
∆t

(3.3)

where φP represents the average value of φ in a CV centered on a point P and the superscript “old” represents
the previous time-step value. The value VP is the volume of the CV and ∆t is the time step size.

Convection Term

The discretization for the convection term is given by∫
V

∇ · (~uφ) dV =
∫
S

(~n · ~u)φdS (3.4)

'
∑
f

(~n · ~u)fφfAf (3.5)

where we have used the divergence theorem to transform the integral over the CV volume
∫
V

into an integral
over the CV surface

∫
S

. The summation over the faces of a CV is denoted by
∑
f and Af is the area of each

face. The vector ~n is the normal to the face pointing out of the CV into an adjacent CV centered on point
A. When using a first order approximation, the value of φf must depend on the average value in adjacent
cell φA and the average value in the cell of interest φP , such that

φf = αfφP + (1− αf )φA. (3.6)

The weighting factor αf is determined by the convection scheme, described later in this chapter.



32 3. Theoretical and Numerical Background

Diffusion Term

The discretization for the diffusion term is given by∫
V

∇ · (Γ∇{. . .})dV =
∫
S

Γ(~n · ∇{. . .})dS (3.7)

'
∑
f

Γf (~n · ∇{. . .})fAf (3.8)

{. . .} indicates recursive application of the specified operation on φ, depending on the order of the diffusion
term. The estimation for the flux, (~n · ∇{. . .})f , is obtained via

(~n · ∇{. . .})f '
{. . .}A − {. . .}P

dAP
(3.9)

where the value of dAP is the distance between neighboring cell centers. This estimate relies on the or-
thogonality of the mesh, and becomes increasingly inaccurate as the non-orthogonality increases. Correction
terms have been derived to improve this error but are not currently included in FiPy [17].

Source Term

The discretization for the source term is given by,∫
V

Sφ dV ' SφVP . (3.10)

Including any negative dependence of Sφ on φ increases solution stability. The dependence can only be
included in a linear manner so Equation (3.10) becomes

VP (S0 + S1φP ), (3.11)

where S0 is the source which is independent of φ and S1 is the coeficient of the source which is linearly
dependent on φ.

3.4 Linear Equations

The aim of the discretization is to reduce the continuous general equation to a set of discrete linear equations
that can then be solved to obtain the value of the dependent variable at each CV center. This results in a
sparse linear system that requires an efficient iterative scheme to solve. The iterative schemes available to
FiPy are currently encapsulated in the spmatrix suite of solvers and include most common solvers such as
the conjugate gradient method and LU decomposition. There are plans to include other solver suites that
are compatible with Python.
Combining Equations (3.3), (3.5), (3.8) and (3.10), the complete discretization for equation (3.2) can now
be written for each CV as

ρP (φP − φold
P )VP

∆t
=

∑
f

(~n · ~u)fAf [αfφP + (1− αf )φA]

+
∑
f

ΓfAf
(φA − φP )

dAP
+ VP (S0 + S1φP ). (3.12)

http://www.python.org/
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Equation (3.12) is now in the form of a set of linear combinations between each CV value and its neighboring
values and can be written in the form

aPφP =
∑
f

aAφA + bP , (3.13)

where

aP =
ρPVP

∆t
+
∑
f

(aA − Ff )− VPS1, (3.14)

aA = (1− αf )Ff +Df , (3.15)

bP = VPS0 +
ρPVPφ

old
P

∆t
. (3.16)

The face coefficients, Ff and Df , represent the convective strength and diffusive conductance respectively,
and are given by

Ff = Af (~u · ~n)f , (3.17)

Df =
AfΓf
dAP

. (3.18)

3.5 Numerical Schemes

The coefficients of equation (3.13) must remain positive, since an increase in a neighboring value must result
in an increase in φP to obtain physically realistic solutions. Thus, the inequalities aA > 0 and aA − Ff > 0
must be satisfied. The Péclet number Pf ≡ −Ff/Df is the ratio between convective strength and diffusive
conductance. To achieve physically realistic solutions, the inequality

1
1− αf

> Pf > −
1
αf

(3.19)

must be satisfied. The parameter αf is defined by the chosen scheme, depending on Equation (3.19). The
various differencing schemes are:

the central differencing scheme, where

αf =
1
2

(3.20)

so that |Pf | < 2 satisfies Equation (3.19). Thus, the central differencing scheme is only numerically
stable for a low values of Pf .

the upwind scheme, where

αf =

1 if Pf > 0,

0 if Pf < 0.
(3.21)

Equation (3.21) satisfies the inequality in Equation (3.19) for all values of Pf . However the solution
over predicts the diffusive term leading to excessive numerical smearing (“false diffusion”).

the exponential scheme, where

αf =
(Pf − 1) exp (Pf ) + 1
Pf (exp (Pf )− 1)

. (3.22)

This formulation can be derived from the exact solution, and thus, guarantees positive coefficients
while not over-predicting the diffusive terms. However, the computation of exponentials is slow and
therefore a faster scheme is generally used, especially in higher dimensions.
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the hybrid scheme, where

αf =


Pf−1
Pf

if Pf > 2,
1
2 if |Pf | < 2,

− 1
Pf

if Pf < −2.

(3.23)

The hybrid scheme is formulated by allowing Pf → ∞, Pf → 0 and Pf → −∞ in the exponential
scheme. The hybrid scheme is an improvement on the upwind scheme, however, it deviates from the
exponential scheme at |Pf | = 2.

the power law scheme, where

αf =



Pf−1
Pf

if Pf > 10,
(Pf−1)+(1−Pf/10)5

Pf
if 0 < Pf < 10,

(1−Pf/10)5−1
Pf

if −10 < Pf < 0,

− 1
Pf

if Pf < −10.

(3.24)

The power law scheme overcomes the inaccuracies of the hybrid scheme, while improving on the com-
putational time for the exponential scheme.

All of the numerical schemes presented here are available in FiPy and can be selected by the user.



Design and Implementation

The goal of FiPy is to provide a highly customizable, open source code for modeling problems involving
coupled sets of PDEs. FiPy allows users to select and customize modules from within the framework. FiPy
has been developed to address model problems in materials science such as poly-crystals, dendritic growth
and electrochemical deposition. These applications all contain various combinations of PDEs with differing
forms in conjunction with other unusual physics (over varying length scales) and unique solution procedures.
The philosophy of FiPy is to enable customization while providing a library of efficient modules for common
objects and data types.

4.1 Design

Numerical Approach

The solution algorithms given in the FiPy examples involve combining sets of PDEs while tracking an
interface where the parameters of the problem change rapidly. The phase field method and the level set
method are specialized techniques to handle the solution of PDEs in conjunction with a deforming interface.
FiPy contains several examples of both methods.
FiPy uses the well-known Finite Volume Method (FVM) to reduce the model equations to a form tractable
to linear solvers.

Object Oriented Structure

FiPy is programmed in an object-oriented manner. The benefit of object oriented programming mainly lies
in encapsulation and inheritance. Encapsulation refers to the tight integration between certain pieces of
data and methods that act on that data. Encapsulation allows parts of the code to be separated into clearly
defined independent modules that can be re-applied or extended in new ways. Inheritance allows code to be
reused, overridden, and new capabilities to be added without altering the original code. An object is treated
by its users as an abstraction; the details of its implementation and behavior are internal.

Test Based Development

FiPy has been developed with a large number of test cases. These test cases are in two categories. The lower
level tests operate on the core modules at the individual method level. The aim is that every method within
the core installation has a test case. The high level test cases operate in conjunction with example solutions
and serve to test global solution algorithms and the interaction of various modules.
With this two-tiered battery of tests, at any stage in code development, the test cases can be executed and
errors can be identified. A comprehensive test base provides reassurance that any code breakages will be
clearly demonstrated with a broken test case. A test base also aids dissemination of the code by providing
simple examples and knowledge of whether the code is working on a particular computer environment.
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Open Source

In recent years, there has been a movement to release software under open source and associated unrestrictied
licenses, especially within the scientific community. These licensing terms allow users to develop their own
applications with complete access to the source code and then either contribute back to the main source
repository or freely distribute their new adapted version.
As a product of the National Institute of Standards and Technology, the FiPy framework is placed in the
public domain as a matter of U. S. Federal law. Furthermore, FiPy is built upon existing open source tools.
Others are free to use FiPy as they see fit and we welcome contributions to make FiPy better.

High-Level Scripting Language

Programming languages can be broadly lumped into two categories: compiled languages and interpreted (or
scripting) languages. Compiled languages are converted from a human-readable text source file to a machine-
readable binary application file by a sequence of operations generally referred to as “compiling” and “linking”.
The binary application can then be run as many times as desired, but changes will provoke a new cycle of
compiling and linking. Interpreted languages are converted from human-readable to machine-readable on
the fly, each time the script is executed. Because the conversion happens every time1, interpreted code is
usually slower when running than compiled code. On the other hand, code development and debugging
tends to be much easier and fluid when it’s not necessary to wait for compile and link cycles after every
change. Furthermore, because the conversion happens in real time, it is possible to have interactive sessions
in a scripting language that are not generally possible in compiled languages.
Another distinction, somewhat orthogonal, but closely related, to that between compiled and interpreted
languages, is between low-level languages and high-level languages. Low-level languages describe actions
in simple terms that are closer to the way the computer actually functions. High-level languages describe
actions in more complex and abstract terms that are closer to the way the programmer thinks about the
problem at hand. This increased complexity in the meaning of an expression renders simpler code, because
the details of the implementation are hidden away in the language internals or in an external library. For
example, a low-level matrix multiplication written in C might be rendered as

if (Acols != Brows)
error "these matrix shapes cannot be multiplied";

C = (float *) malloc(sizeof(float) * Bcols * Arows);

for (i = 0; i < Bcols; i++) {
for (j = 0; j < Arows; j++) {

C[i][j] = 0;
for (k = 0; k < Acols; k++) {

C[i][j] += A[i][k] * B[k][j];
}

}
}

Note that the dimensions of the arrays must be supplied externally, as C provides no intrinsic mechanism
for determining the shape of an array. An equivalent high-level construction might be as simple as

C = A * B

1. . . neglecting such common optimizations as byte-code interpreters
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All of the error checking, dimension measuring, and space allocation is handled automatically by low-level
code that is intrinsic to the high-level matrix multiplication operator. The high-level code “knows” that
matrices are involved, how to get their shapes, and to interpret ‘*’ as a matrix multiplier instead of an
arithmetic one. All of this allows the programmer to think about the operation of interest and not worry
about introducing bugs in low-level code that is not unique to their application.
Although it needn’t be true, for a variety of reasons, compiled languages tend to be low-level and inter-
preted languages tend to be high-level. Because low-level languages operate closer to the intrinsic “machine
language” of the computer, they tend to be faster at running a given task than high-level languages, but
programs written in them take longer to write and debug. Because running performance is a paramount
concern, most scientific codes are written in low-level compiled languages like FORTRAN or C.
A rather common scenario in the development of scientific codes is that the first draft hard-codes all of the
problem parameters. After a few (hundred) iterations of recompiling and relinking the application to explore
changes to the parameters, code is added to read an input file containing a list of numbers. Eventually, the
point is reached where it is impossible to remember which parameter comes in which order or what physical
units are required, so code is added to, for example, interpret a line beginning with ‘#’ as a comment. At
this point, the scientist has begun developing a scripting language without even knowing it. Unfortunately
for them, very few scientists have actually studied computer science or actually know anything about the
design and implementation of script interpreters. Even if they have the expertise, the time spent developing
such a language interpreter is time not spent actually doing research.
In contrast, a number of very powerful scripting languages, such as Tcl, Java, Python, Ruby, and even the
venerable BASIC, have open source interpreters that can be embedded directly in an application, giving
scientific codes immediate access to a high-level scripting language designed by someone who actually knew
what they were doing.
We have chosen to go a step further and not just embed a full-fledged scripting language in the FiPy
framework, but instead to design the framework from the ground up in a scripting language. While runtime
performance is unquestionably important, many scientific codes are run relatively little, in proportion to the
time spent developing them. If a code can be developed in a day instead of a month, it may not matter if it
takes another day to run instead of an hour. Furthermore, there are a variety of mechanisms for diagnosing
and optimizing those portions of a code that are actually time-critical, rather than attempting to optimize
all of it by using a language that is more palatable to the computer than to the programmer. Thus FiPy,
rather than taking the approach of writing the fast numerical code first and then dealing with the issue of
user interaction, initially implements most modules in high-level scripting language and only translates to
low-level compiled code those portions that prove inefficient. A discussion of efficiency issues can be found
in Chapter 5.

Python Programming Language

Acknowledging that several scripting languages offer a number, if not all, of the features described above,
we have selected Python for the implementation of FiPy. Python is:

• an interpreted language that combines remarkable power with very clear syntax,

• freely usable and distributable, even for commercial use,

• fully object oriented,

• distributed with powerful automated testing tools (doctest, unittest),

• actively used and extended by other scientists and mathemeticians (SciPy, Numeric, Scientific Python,
PySparse).

• easily integrated with low-level languages such as C (weave, blitz, PyRex).

http://www.python.org/
http://www.python.org/
http://www.python.org/
http://www.python.org/doc/current/lib/module-doctest.html
http://www.python.org/doc/current/lib/module-unittest.html
http://www.scipy.org/
http://www.numpy.org/
http://starship.python.net/~hinsen/ScientificPython/
http://people.web.psi.ch/geus/pyfemax/pysparse.html
http://www.scipy.org/documentation/weave/
http://www.scipy.org/documentation/weave/
http://www.cosc.canterbury.ac.nz/~greg/python/Pyrex/
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4.2 Implementation

The Python classes that make up FiPy are described in detail in the FiPy Programmer’s Reference, but we
give a brief overview here. FiPy is based around three fundamental Python classes: Mesh, Variable, and
Term. Using the terminology of Chapter 3:

A Mesh object represents the domain of interest. FiPy contains many different specific mesh classes to
describe different geometries.

A Variable object represents a quantity or field that can change during the problem evolution. A partic-
ular type of Variable, called a CellVariable, represents φ at the centers of the Cells of the Mesh.
A CellVariable describes the values of the field φ, but it is not concerned with their geometry; that
role is taken by the Mesh.

An important property of Variable objects is that they can describe dependency relationships, such
that:

>>> a = Variable(value = 3)
>>> b = a * 4

does not assign the value 12 to b, but rather it assigns a multiplication operator object to b, which
depends on the Variable object a:

>>> b
(Variable(value = 3) * 4)
>>> a.setValue(5)
>>> b
(Variable(value = 5) * 4)

The numerical value of the Variable is not calculated until it is needed (a process known as “lazy
evaluation”):

>>> print b
20

A Term object represents any of the terms in Equation (3.2) or any linear combination of such terms. Early
in the development of FiPy, a distinction was made between Equation objects, which represented all
of Equation (3.2), and Term objects, which represented the individual terms in that equation. The
Equation object has since been eliminated as redundant. Term objects can be single entities such as
an ImplicitDiffusionTerm or a linear combination of other Term objects that build up to form an
expression such as Equation (3.2).

Beyond these three fundamental classes of Mesh, Variable, and Term, FiPy is composed of a number of
related classes. The relationships between these classes are shown in Figure 4.1. A Mesh object is composed
of Cell objects. Each Cell is defined by its bounding Face objects and each Face is defined by its bounding
Vertex objects. A Term object encapsulates the contributions to the SparseMatrix that defines the solution
of an equation. BoundaryCondition objects are used to describe the conditions on the boundaries of the
Mesh, and each Term interprets the BoundaryCondition objects as necessary to modify the SparseMatrix.
An equation constructed from Term objects can apply a unique Solver to invert its SparseMatrix in the
most expedient and stable fashion. At any point during the solution, a Viewer can be invoked to display
the values of the solved Variable objects.
At this point, it will be useful to examine some of the example problems in Part II. More classes are introduced
in the examples, along with illustrations of their instantiation and use.

http://www.python.org/
http://www.python.org/
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Efficiency

This section will present results and discussion of efficiency evaluations with FiPy. Programming in Python
allows greater efficiency when designing and implementing new code, but it has some intrinsic inefficiencies
during execution as compared with the C or FORTRAN programming languages. These inefficiencies can
be minimized by translating sections of code that are used frequently into C.
FiPy has been tested against an in-house phase field code, written at NIST, to model grain growth and
subsequent impingement. This problem can be executed by running:

$ examples/phase/impingement/mesh20x20/input.py \
> --numberOfElements=10000 --numberOfSteps=1000

from the base FiPy directory. The in-house code was written by Ryo Kobayashi and is used to generate the
results presented in [24].
The raw CPU execution times for 10 time steps are presented in the following table. The run times are in
seconds and the memory usage is in kilobytes. The Kobayashi code is given the heading of FORTRAN while
FiPy is run with and without inlining. The memory usage is for FiPy simulations with the --inline. The
--no-cache flag is on in all cases for the following table.

Elements FiPy (s) FiPy --inline (s) FORTRAN
(s)

FiPy memory
(KiB)

FORTRAN
memory (KiB)

100 0.77 0.30 0.0009 39316 772
400 0.87 0.37 0.0031 39664 828
1600 1.4 0.65 0.017 40656 1044
6400 3.7 2.0 0.19 46124 1880
25600 19 10 1.3 60840 5188
102400 79 43 4.6 145820 18436

The plain Python version of FiPy, which uses Numeric for all array operations, is around 17 times slower
than the FORTRAN code. Using the --inline flag, this penalty is reduced to about 9 times slower.
It is hoped that in future releases of FiPy the process of C inlining for Variable objects will be automated.
This may result in some efficiency gains, greater than we are seeing for this particular problem since all the
Variable objects will be inlined. Recent analysis has shown that a Variable with multiple operations could
be up to 6 times faster at calculating its value when inlined.
As presented in the above table, memory usage was also recorded for each FiPy simulation. From the
table, once base memory usage is subtracted, each cell requires approximately 1.4 kilobytes of memory. The
measurement of the maximum memory spike is hard with dynamic memory allocation, so these figures should
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only be used as a very rough guide. The FORTRAN memory usage is exact since memory is not allocated
dynamically.

5.1 Efficiency comparison between --no-cache and --cache flags

This table shows results for efficiency tests when using the caching flags. Examples with more variables
involved in complex expressions show the largest improvement in memory usage. The --no-cache option
mainly prevents intermediate variables created due to binary operations from caching their values. This
results in large memory gains while not effecting run times substantially. The table below is with --inline
switched on and with 102400 elements for each case. The --no-cache flag is the default option.

Example time per step
--no-cache (s)

time per step
--cache (s)

memory per cell
--no-cache (KiB)

memory per
cell --cache
(KiB)

Impingement 9.6 4.3 4.1 1.4 2.3
Anisotropy 9.4 3.5 3.2 1.1 1.9
Cahn-Hilliard 3.0 2.5 1.1 1.4
Superfill 10.5 62 62 2.0 2.8
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6.1 How do I represent an equation in FiPy?

As explained in Chapter 3, the canonical governing equation that can be solved by FiPy for the dependent
CellVariable φ is

∂(ρφ)
∂t︸ ︷︷ ︸

transient

= ∇ · (~uφ)︸ ︷︷ ︸
convection

+ [∇ · (Γi∇)]n φ︸ ︷︷ ︸
diffusion

+ Sφ︸︷︷︸
source

(3.2)

A physical problem can involve many different coupled governing equations, one for each variable. Numerous
specific examples are presented in Part II, but let us examine this general expression term-by-term:

How do I represent a transient term ∂(ρφ)/∂t?

>>> TransientTerm(coeff = rho)

Note We have specified neither the variable φ nor the time step. Both are handled when we actually solve the

equation.
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How do I represent a convection term ∇ · (~uφ)?

>>> <Specific>ConvectionTerm(coeff = u,
... diffusionTerm = diffTerm)

where <Specific> can be any of CentralDiff, Exponential, Hybrid, PowerLaw, Upwind, ExplicitUpwind,
or VanLeer. The differences between these convection schemes are described in Section 3.5. The velocity
coefficient u must be a FaceVectorVariable, or a constant vector in the form of a Python list or tuple, e.g.
(1,2) for a vector in 2D.

Note As discussed in Section 3.5, the convection schemes need to calculate a Péclet number, and therefore

need to know about any diffusion term used in the problem. It is hoped that this dependency can be
automated in the future.

Warning VanLeerConvectionTerm not mentioned and no discussion of explicit forms.

How do I represent a diffusion term ∇ · (Γ1∇φ)?

Either

>>> ImplicitDiffusionTerm(coeff = Gamma1)

or

>>> ExplicitDiffusionTerm(coeff = Gamma1)

ExplicitDiffusionTerm is provided only for illustrative purposes. ImplicitDiffusionTerm is almost al-
ways preferred. It is theoretically possible to create an explicit diffusion term with

>>> (Gamma1 * phi.getFaceGrad()).getDivergence()

Unfortunately, in this form, any boundary conditions on φ will not be accounted for.

How do I represent a term ∇4φ or ∇ · (Γ1∇ (∇ · (Γ2∇φ))) such as for Cahn-Hilliard?

>>> ImplicitDiffusionTerm(coeff = (Gamma1, Gamma2))

The number of elements supplied for coeff determines the order of the term.

What if the term isn’t one of those?

Any term that cannot be written in one of the previous forms is considered a source Sφ. An explicit source
is written in Python essentially as it appears in mathematical form, e.g., 3κ2 + b sin θ would be written

>>> 3 * kappa**2 + b * sin(theta)
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Note Functions like sin() can be obtained from the fipy.tools.numerix module.

Warning Generally, things will not work as expected if the equivalent function is used from the Numeric

library.

If, however, the source depends on the variable that is being solved for, it can be advantageous to linearize
the source and cast part of it as an implicit source term, e.g., 3κ2 + φ sin θ might be written as

>>> 3 * kappa**2 + ImplicitSourceTerm(coeff = sin(theta))

Warning There are subtleties in properly linearizing a source term which are examined in Example 9.1.

How do I represent a . . . term that doesn’t involve the dependent variable?

It is important to realize that, even though an expression may superficially resemble one of those shown
above, if the dependent variable for that PDE does not appear in the appropriate place, then that term
should be treated as a source.

How do I represent a diffusive source?

If the governing equation for φ is
∂φ

∂t
= ∇ · (D1∇φ) +∇ · (D2∇ξ)

then the first term is a TransientTerm and the second term is an ImplicitDiffusionTerm, but the third
term is simply an explicit source, which is written in Python as

>>> (D2 * xi.getFaceGrad()).getDivergence()

Higher order diffusive sources can be obtained by simply nesting the calls to getFaceGrad() and getDivergence().

Note We use getFaceGrad(), rather than getGrad(), in order to obtain a second-order spatial discretization

of the diffusion term in ξ, consistent with the matrix that is formed by ImplicitDiffusionTerm for φ.

How do I represent a convective source?

The convection of an independent field ξ as in

∂φ

∂t
= ∇ · (~uξ)

can be rendered as

>>> (u * xi.getArithmeticFaceValue()).getDivergence()

when ~u is a VectorFaceVariable (preferred) or as

>>> (u * xi).getDivergence()

if ~u is a VectorCellVariable.

http://www.numpy.org/
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How do I represent a transient source?

The time-rate-of change of an independent variable ξ, such as in

∂(ρ1φ)
∂t

=
∂(ρ2ξ)
∂t

does not have an abstract form in FiPy and should be discretized directly, in the manner of Equation (3.3),
as

>>> TransientTerm(coeff = rho1) == rho2 * (xi - xi.getOld()) / timeStep

This technique is used in Example 9.4.

What if my term involves the dependent variable, but not where FiPy puts it?

Frequently, viewing the term from a different perspective will allow it to be cast in one of the canonical
forms. For example, the third term in

∂φ

∂t
= ∇ · (D1∇φ) +∇ · (D2φ∇ξ)

might be considered as the diffusion of the independent variable ξ with a mobility D2φ that is a function
of the dependent variable φ. For FiPy’s purposes, however, this term represents the convection of φ, with a
velocity D2∇ξ, due to the counter-diffusion of ξ, so

>>> diffTerm = ImplicitDiffusionTerm(coeff = D1)
>>> convTerm = <Specific>ConvectionTerm(coeff = D2 * xi.getFaceGrad(),
... diffusionTerm = diffTerm)
>>> eq = TransientTerm() == diffTerm + convTerm

What if the coefficient of a term depends on the variable that I’m solving for?

A non-linear coefficient, such as the diffusion coefficient in ∇ · [Γ1(φ)∇φ] = ∇ · [Γ0φ(1 − φ)∇φ] is not a
problem for FiPy. Simply write it as it appears:

>>> diffTerm = ImplicitDiffusionTerm(coeff = Gamma0 * phi * (1 - phi))

Note Due to the nonlinearity of the coefficient, it will probably be necessary to “sweep” the solution to

convergence as discussed in FAQ 6.5.

6.2 How do I export data?

The way to save your calculations depends on how you plan to make use of the data. If you want to save it
for “restart” (so that you can continue or redirect a calculation from some intermediate stage), then you’ll
want to “pickle” the Python data with the dump module. This is illustrated in Examples 9.4, 9.5, 9.6, and
10.8.
On the other hand, pickled FiPy data is of little use to anything besides Python and FiPy. If you want
to import your calculations into another piece of software, whether to make publication-quality graphs or
movies, or to perform some analysis, or as input to another stage of a multiscale model, then you can save
your data as an ascii text file of tab-separated-values with a TSVViewer. This is illustrated in Example 7.3.

http://www.python.org/
http://www.python.org/
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6.3 How do I save a plot image?

Some of the viewers have a button or other mechanism in the user interface for saving an image file. Also,
you can supply an optional keyword filename when you tell the viewer to plot(), e.g.

>>> viewer.plot(filename="myimage.ext")

which will save a file named myimage.ext in your current working directory. The type of image is determined
by the file extension “.ext”. Different viewers have different capabilities: Pygist accepts “.eps” (Encap-
sulated PostScript) and “.cgm” (Computer Graphics Metafile). Matplotlib accepts “.eps”, “.jpg” (Joint
Photographic Experts Group), and “.png” (Portable Network Graphics). MayaVi only accepts “.png”.

6.4 How do I make a movie?

FiPy has no facilities for making movies. You will need to save individual frames (see the previous question)
and then stitch them together into a movie, using one of a variety of different free, shareware, or commercial
software packages.

6.5 Iterations, timesteps, and sweeps? Oh, my!

Any non-linear solution of partial differential equations is an approximation. These approximations benefit
from repetetive solution to achieve the best possible answer. In FiPy (and in many similar PDE solvers),
there are three layers of repetition.

iterations This is the lowest layer of repetition, which you’ll generally need to spend the least time thinking
about. FiPy solves PDEs by discretizing them into a set of linear equations in matrix form, as explained
in Sections 3.3 and 3.4. It is not always practical, or even possible, to exactly solve these matrix
equations on a computer. FiPy thus employs “iterative solvers”, which make successive approximations
until the linear equations have been satisfactorily solved. FiPy chooses a default number of iterations
and solution tolerance, which you will not generally need to change. If you do wish to change these
defaults, you’ll need to create a new Solver object with the desired number of iterations and solution
tolerance, e.g.

>>> mySolver = LinearPCGSolver(iterations=1234, tolerance=5e-6)
:
:

>>> eq.solve(..., solver=mySolver, ...)

Note The older Solver steps= keyword is now deprecated in favor of iterations= to make the role

clearer.

Solver iterations are changed from their defaults in Examples 11.1, 12.1, and 13.

sweeps This middle layer of repetition is important when a PDE is non-linear (e.g., a diffusivity that
depends on concentration) or when multiple PDEs are coupled (e.g., if solute diffusivity depends on
temperature and thermal conductivity depends on concentration). Even if the Solver solves the linear
approximation of the PDE to absolute perfection by performing an infinite number of iterations, the
solution may still not be a very good representation of the actual non-linear PDE. If we resolve the
same equation at the same point in elapsed time, but use the result of the previous solution instead of
the previous timestep, then we can get a refined solution to the non-linear PDE in a process known
as “sweeping.”

http://bonsai.ims.u-tokyo.ac.jp/~mdehoon/software/python/pygist.html
http://en.wikipedia.org/wiki/Encapsulated_PostScript
http://en.wikipedia.org/wiki/Encapsulated_PostScript
http://xml.coverpages.org/cgm.html
http://matplotlib.sourceforge.net
http://www.jpeg.org/
http://www.jpeg.org/
http://www.w3.org/Graphics/PNG/
http://mayavi.sourceforge.net
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Note Despite references to the “previous timestep,” sweeping is not limited to time-evolving problems.

Nonlinear sets of quasi-static or steady-state PDEs can require sweeping, too.

We need to distinguish between the value of the variable at the last timestep and the value of the
variable at the last sweep (the last cycle where we tried to solve the current timestep). This is done
by first modifying the way the variable is created:

>>> myVar = CellVariable(..., hasOld=1)

and then by explicitly moving the current value of the variable into the “old” value only when we want
to:

>>> myVar.updateOld()

Finally, we will need to repeatedly solve the equation until it gives a stable result. To clearly distinguish
that a single cycle will not truly “solve” the equation, we invoke a different method “sweep()”:

>>> for sweep in range(sweeps):
... eq.sweep(var=myVar, ...)

Even better than sweeping a fixed number of cycles is to do it until the non-linear PDE has been solved
satisfactorily:

>>> while residual > desiredResidual:
... residual = eq.sweep(var=myVar, ...)

Sweeps are used to achieve better solutions in Examples 7.1, 9.1, 9.2, and 12.1.

timesteps This outermost layer of repetition is of most practical interest to the user. Understanding the
time evolution of a problem is frequently the goal of studying a particular set of PDEs. Moreover,
even when only an equilibrium or steady-state solution is desired, it may not be possible to simply
solve that directly, due to non-linear coupling between equations or to boundary conditions or initial
conditions. Some types of PDEs have fundamental limits to how large a timestep they can take before
they become either unstable or inaccurate.

Note Stability and accuracy are distinctly different. An unstable solution is often said to “blow up”,

with radically different values from point to point, often diverging to infinity. An inaccurate solution may
look perfectly reasonable, but will disagree significantly from an analytical solution or from a numerical
solution obtained by taking either smaller or larger timesteps.

For all of these reasons, you will frequently need to advance a problem in time and to choose an
appropriate interval between solutions. This can be simple:

>>> timeStep = 1.234e-5
>>> for step in range(steps):
... eq.solve(var=myVar, dt=timeStep, ...)

or more elaborate:

>>> timeStep = 1.234e-5
>>> elapsedTime = 0
>>> while elapsedTime < totalElapsedTime:
... eq.solve(var=myVar, dt=timeStep, ...)
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... elapsedTime += timeStep

... timeStep = SomeFunctionOfVariablesAndTime(myVar1, myVar2, elapedTime)

A majority of the examples in this manual illustrate time evolving behavior. Notably, boundary
conditions are made a function of elapsed time in Example 7.1. The timestep is chosen based on the
expected interfacial velocity in Example 9.1. The timestep is gradually increased as the kinetics slow
down in Example 11.1.

Finally, we can (and often do) combine all three layers of repetition:

>>> myVar = CellVariable(..., hasOld=1)
:
:

>>> mySolver = LinearPCGSolver(iterations=1234, tolerance=5e-6)
:
:

>>> while elapsedTime < totalElapsedTime:
... myVar.updateOld()
... while residual > desiredResidual:
... residual = eq.sweep(var=myVar, dt=timeStep, ...)
... elapsedTime += timeStep

6.6 Why the distinction between CellVariable and FaceVariable coefficients?

FiPy solves field variables on the Cell centers. Transient and source terms describe the change in the value
of a field at the Cell center, and so they take a CellVariable coefficient. Diffusion and convection terms
involve fluxes between Cell centers, and are calculated on the Face between two Cells, and so they take a
FaceVariable or VectorFaceVariable coefficient.

Note If you supply a CellVariable var when a FaceVariable is expected, FiPy will automatically

substitute var.getArithmeticFaceValue(). This can have undesirable consequences, however. For one
thing, the arithmetic face average of a non-linear function is not the same as the same non-linear function of
the average argument, e.g., for f(x) = x2,

f(
1 + 2

2
) =

9
4
6= f(1) + f(2)

2
=

5
2

This distinction is not generally important for smoothly varying functions, but can dramatically affect the
solution when sharp changes are present. Also, for many problems, such as a conserved concentration field
that cannot be allowed to drop below zero, a harmonic average is more appropriate than an arithmetic average.
If you experience problems (unstable or wrong results, or excessively small timesteps), you may need to
explicitly supply the desired FaceVariable rather than letting FiPy assume one.

6.7 What does this error message mean?

• “ValueError: frames are not aligned”

This error most likely means that you have provided a CellVariable when FiPy was expecting a
FaceVariable (or vice versa).
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• “MA.MA.MAError: Cannot automatically convert masked array to Numeric because data is
masked in one or more locations.”

This not-so-helpful error message could mean a number of things, but the most likely explanation is
that the solution has become unstable and is diverging to ±∞. This can be caused by taking too large
a timestep or by using explicit terms instead of implicit ones.

• “repairing catalog by removing key”

This message (not really an error, but may cause test failures) can result when using the SciPy weave
package via the --inline flag. It is due to a bug in SciPy that has been patched in their source repos-
itory: http://www.scipy.org/mailinglists/mailman?fn=scipy-dev/2005-June/003010.html.

• “numerix Numeric 23.6”

This is neither an error nor a warning. It’s just a sloppy message left in SciPy: http://thread.gmane.
org/gmane.comp.python.scientific.user/4349.

6.8 What if my question isn’t answered here?

Please post your question to the mailing list [6] or file a Tracker request [7].

http://www.scipy.org/
http://www.scipy.org/documentation/weave/
http://www.scipy.org/
http://www.scipy.org/mailinglists/mailman?fn=scipy-dev/2005-June/003010.html
http://www.scipy.org/
http://thread.gmane.org/gmane.comp.python.scientific.user/4349
http://thread.gmane.org/gmane.comp.python.scientific.user/4349
http://www.ctcms.nist.gov/fipy/mail.html
http://sourceforge.net/tracker/?group_id=118428
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Note

Any given “Module example.something.input” can be found in the file “examples/something/input.py”.

These examples can be used in at least four ways:

• Each example can be invoked individually to demonstrate an application of FiPy:

$ examples/something/input.py

• Each example can be invoked such that when it has finished running, you will be left in an interactive
Python shell:

$ python -i examples/something/input.py

At this point, you can enter Python commands to manipulate the model or to make queries about the
example’s variable values. For instance, the interactive Python sessions in the example documentation
can be typed in directly to see that the expected results are obtained.

• Alternatively, these interactive Python sessions, known as doctest blocks, can be invoked as automatic
tests:

$ python setup.py test --examples

In this way, the documentation and the code are always certain to be consistent.

• Finally, and most importantly, the examples can be used as a templates to design your own problem
scripts.

Note

The examples shown in this manual have been written with particular emphasis on serving as both
documentation and as comprehensive tests of the FiPy framework. As explained at the end of
examples/diffusion/steadyState/mesh1D.py, your own scripts can be much more succint, if you
wish, and include only the text that follows the “>>>” and “...” prompts shown in these examples.
To obtain a copy of an example, containing just the script instructions, type:

$ python setup.py copy script --From x.py --To y.py

In addition to those presented in this manual, there are dozens of other files in the examples/ directory
(all with “input” in their title), that demonstrate other uses of FiPy. If these examples do not help you
construct your own problem scripts, please contact us.

http://www.python.org/
http://www.python.org/
http://www.python.org/
http://www.python.org/doc/current/lib/module-doctest.html
mailto:fipy@nist.gov
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Diffusion Examples

7.1 Module examples.diffusion.mesh1D

To run this example from the base FiPy directory, type:

$ examples/diffusion/mesh1D.py

at the command line. Different stages of the example should be displayed, along with prompting messages
in the terminal.
This example takes the user through assembling a simple problem with FiPy. It describes different approaches
to a 1D diffusion problem with constant diffusivity and fixed value boundary conditions such that,

∂φ

∂t
= D∇2φ. (7.1)

The first step is to define a one dimensional domain with 50 solution points. The Grid1D object represents
a linear structured grid. The parameter dx refers to the grid spacing (set to unity here).

>>> nx = 50
>>> dx = 1.
>>> from fipy.meshes.grid1D import Grid1D
>>> mesh = Grid1D(nx = nx, dx = dx)

FiPy solves all equations at the centers of the cells of the mesh. We thus need a CellVariable object to
hold the values of the solution, with the initial condition φ = 0 at t = 0,

>>> from fipy.variables.cellVariable import CellVariable
>>> phi = CellVariable(name="solution variable",
... mesh=mesh,
... value=0)

We’ll let

>>> D = 1.

for now.
The set of boundary conditions are given to the equation as a Python tuple or list (the distinction is not
generally important to FiPy). The boundary conditions

φ =

0 at x = 1,

1 at x = 0.

are formed with a value

57
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>>> valueLeft = 1
>>> valueRight = 0

and a set of faces over which they apply.

Note

Only faces around the exterior of the mesh can be used for boundary conditions.

For example, here the exterior faces on the left of the domain are extracted by mesh.getFacesLeft(). A
FixedValue boundary condition is created with these faces and a value (valueLeft).

>>> from fipy.boundaryConditions.fixedValue import FixedValue
>>> BCs = (FixedValue(faces=mesh.getFacesRight(), value=valueRight),
... FixedValue(faces=mesh.getFacesLeft(), value=valueLeft))

Note

If no boundary conditions are specified on exterior faces, the default boundary condition is
FixedFlux(faces=someFaces, value=0.), equivalent to ~n · ∇φ|someFaces = 0.

If you have ever tried to numerically solve Eq. (7.1), you most likely attempted “explicit finite differencing”
with code something like:

for step in range(steps):
for j in range(cells):

phi new[j] = phi old[j] \
+ (D * dt / dx**2) * (phi old[j+1] - 2 * phi old[j] + phi old[j-1])

time += dt

plus additional code for the boundary conditions. In FiPy, you would write

>>> from fipy.terms.explicitDiffusionTerm import ExplicitDiffusionTerm
>>> from fipy.terms.transientTerm import TransientTerm
>>> eqX = TransientTerm() == ExplicitDiffusionTerm(coeff=D)

The largest stable timestep that can be taken for this explicit 1D diffusion problem is ∆t ≤ ∆x2/(2D). We
limit our steps to 90% of that value for good measure

>>> timeStepDuration = 0.9 * dx**2 / (2 * D)
>>> steps = 100

In a semi-infinite domain, the analytical solution for this transient diffusion problem is given by φ = 1 −
erf(x/2

√
Dt). If the SciPy library is available, the result is tested against the expected profile:

>>> x = mesh.getCellCenters()[...,0]
>>> t = timeStepDuration * steps
>>> from fipy.tools.numerix import sqrt

>>> phiAnalytical = CellVariable(name="analytical value",
... mesh=mesh)

http://www.scipy.org/
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>>> try:
... from scipy.special import erf
... phiAnalytical.setValue(1 - erf(x / (2 * sqrt(D * t))))
... except ImportError:
... print "The SciPy library is not available to test the solution to \
... the transient diffusion equation"

If we’re running interactively, we’ll want to view the result, but not if this example is being run automatically
as a test. We accomplish this by having Python check if this script is the “ main ” script, which will only
be true if we explicitly launched it and not if it has been imported by another script such as the automatic
tester. The function fipy.viewers.make() returns a suitable viewer depending on available viewers and
the dimension of the mesh.

>>> if __name__ == ’__main__’:
... from fipy import viewers
... viewer = viewers.make(vars=(phi, phiAnalytical),
... limits={’datamin’: 0., ’datamax’: 1.})
... viewer.plot()

We then solve the equation by repeatedly looping in time:

>>> for step in range(steps):
... eqX.solve(var=phi,
... boundaryConditions=BCs,
... dt=timeStepDuration)
... if __name__ == ’__main__’:
... viewer.plot()

>>> print phi.allclose(phiAnalytical, atol = 7e-4)
1

>>> if __name__ == ’__main__’:
... raw_input("Explicit transient diffusion. Press <return> to proceed...")



60 7. Diffusion Examples

0 10 20 30 40 50
0

0.2

0.4

0.6

0.8

1

solution variable
analytical value

Although explicit finite differences are easy to program, we have just seen that this 1D transient diffusion
problem is limited to taking rather small time steps. If, instead, we represent Eq. (7.1) as:

phi new[j] = phi old[j] \
+ (D * dt / dx**2) * (phi new[j+1] - 2 * phi new[j] + phi new[j-1])

it is possible to take much larger time steps. Because phi new appears on both the left and right sides of
the equation, this form is called “implicit”. In general, the “implicit” representation is much more difficult
to program than the “explicit” form that we just used, but in FiPy, all that is needed is to write

>>> from fipy.terms.implicitDiffusionTerm import ImplicitDiffusionTerm
>>> eqI = TransientTerm() == ImplicitDiffusionTerm(coeff=D)

reset the problem

>>> phi.setValue(valueRight)

and rerun with much larger time steps

>>> timeStepDuration *= 10
>>> steps /= 10
>>> for step in range(steps):
... eqI.solve(var=phi,
... boundaryConditions=BCs,
... dt=timeStepDuration)
... if __name__ == ’__main__’:
... viewer.plot()

>>> print phi.allclose(phiAnalytical, atol = 2e-2)
1

>>> if __name__ == ’__main__’:
... raw_input("Implicit transient diffusion. Press <return> to proceed...")
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Note that although much larger stable timesteps can be taken with this implicit version (there is, in fact,
no limit to how large an implicit timestep you can take for this particular problem), the solution is less
accurate. One way to achieve a compromise between stability and accuracy is with the Crank-Nicholson
scheme, represented by:

phi new[j] = phi old[j] + (D * dt / (2 * dx**2)) * \
((phi new[j+1] - 2 * phi new[j] + phi new[j-1])
+ (phi old[j+1] - 2 * phi old[j] + phi old[j-1]))

which is essentially an average of the explicit and implicit schemes from above. This can be rendered in FiPy
as easily as

>>> eqCN = eqX + eqI

We again reset the problem

>>> phi.setValue(valueRight)

and apply the Crank-Nicholson scheme until the end, when we apply one step of the fully implicit scheme
to drive down the error (see, e.g., [25, §19.2]).

>>> for step in range(steps - 1):
... eqCN.solve(var=phi,
... boundaryConditions=BCs,
... dt=timeStepDuration)
... if __name__ == ’__main__’:
... viewer.plot()
>>> eqI.solve(var=phi,
... boundaryConditions=BCs,
... dt=timeStepDuration)
>>> if __name__ == ’__main__’:
... viewer.plot()
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>>> print phi.allclose(phiAnalytical, atol = 3e-3)
1

>>> if __name__ == ’__main__’:
... raw_input("Crank-Nicholson transient diffusion. Press <return> to proceed...")

As mentioned above, there is no stable limit to how large a time step can be taken for the implicit diffusion
problem. In fact, if the time evolution of the problem is not interesting, it is possible to eliminate the time
step altogether by omitting the TransientTerm. The steady-state diffusion equation

D∇2φ = 0

is represented in FiPy by

>>> ImplicitDiffusionTerm(coeff=D).solve(var=phi,
... boundaryConditions=BCs)
...

>>> if __name__ == ’__main__’:
... viewer.plot()

The analytical solution to the steady-state problem is no longer an error function, but simply a straight line,
which we can confirm to a tolerance of 10−10.

>>> L = nx * dx
>>> print phi.allclose(valueLeft + (valueRight - valueLeft) * x / L,
... rtol = 1e-10, atol = 1e-10)
1

>>> if __name__ == ’__main__’:
... raw_input("Implicit steady-state diffusion. Press <return> to proceed...")
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Often, boundary conditions may be functions of another variable in the system or of time. For example, to
have

φ =

(1 + sin t)/2 on x = 0

0 on x = L

we will need to declare time t as a Variable

>>> from fipy.variables.variable import Variable
>>> time = Variable()

and then declare our boundary condition as a function of this Variable

>>> from fipy.tools.numerix import sin
>>> BCs = (FixedValue(faces=mesh.getFacesLeft(), value=0.5 * (1 + sin(time))),
... FixedValue(faces=mesh.getFacesRight(), value=0.))

When we update time at each timestep, the left-hand boundary condition will automatically update,

>>> dt = .1
>>> while time() < 15:
... time.setValue(time() + dt)
... eqI.solve(var=phi, dt=dt, boundaryConditions=BCs)
... if __name__ == ’__main__’:
... viewer.plot()

>>> if __name__ == ’__main__’:
... raw_input("Time-dependent boundary condition. Press <return> to proceed...")
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Many interesting problems do not have simple, uniform diffusivities. We consider a steady-state diffusion
problem

∇ · (D∇φ) = 0,
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with a spatially varying diffusion coefficient

D =


1 for 0 < x < L/4,

0.1 for L/4 ≤ x < 3L/4,

1 for 3L/4 ≤ x < L,

and with boundary conditions φ = 0 at x = 0 and D ∂φ
∂x = 1 at x = L, where L is the length of the solution

domain. Exact numerical answers to this problem are found when the mesh has cell centers that lie at L/4
and 3L/4, or when the number of cells in the mesh Ni satisfies Ni = 4i+ 2, where i is an integer. The mesh
we’ve been using thus far is satisfactory, with Ni = 50 and i = 12. Because FiPy considers diffusion to be
a flux from one Cell to the next, through the intervening Face, we must define the non-uniform diffusion
coefficient on the mesh faces

>>> from fipy.variables.faceVariable import FaceVariable
>>> D = FaceVariable(mesh=mesh, value=1.0)
>>> x = mesh.getFaceCenters()[...,0]
>>> D.setValue(0.1, where=(L / 4. <= x) & (x < 3. * L / 4.))

The boundary conditions are a fixed value of

>>> valueLeft = 0.

to the left and a fixed flux of

>>> fluxRight = 1.

to the right:

>>> from fipy.boundaryConditions.fixedFlux import FixedFlux
>>> BCs = (FixedValue(faces=mesh.getFacesLeft(), value=valueLeft),
... FixedFlux(faces=mesh.getFacesRight(), value=fluxRight))

We re-initialize the solution variable

>>> phi.setValue(0)

and obtain the steady-state solution with one implicit solution step

>>> ImplicitDiffusionTerm(coeff = D).solve(var=phi,
... boundaryConditions = BCs)

The analytical solution is simply

φ =


x for 0 < x < L/4,

10x− 9L/4 for L/4 ≤ x < 3L/4,

x+ 18L/4 for 3L/4 ≤ x < L,

or

>>> x = mesh.getCellCenters()[...,0]
>>> from fipy.tools.numerix import where
>>> phiAnalytical.setValue(x)
>>> phiAnalytical.setValue(10 * x - 9. * L / 4. ,
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... where=(L / 4. <= x) & (x < 3. * L / 4.))
>>> phiAnalytical.setValue(x + 18. * L / 4. ,
... where=3. * L / 4. <= x)
>>> print phi.allclose(phiAnalytical, atol = 1e-8, rtol = 1e-8)
1

And finally, we can plot the result

>>> if __name__ == ’__main__’:
... viewers.make(vars=(phi, phiAnalytical)).plot()
... raw_input("Non-uniform steady-state diffusion. Press <return> to proceed...")
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Often, the diffusivity is not only non-uniform, but also depends on the value of the variable, such that

∂φ

∂t
= ∇ · [D(φ)∇φ]. (7.2)

With such a non-linearity, it is generally necessary to “sweep” the solution to convergence. This means that
each time step should be calculated over and over, using the result of the previous sweep to update the
coefficients of the equation, without advancing in time. In FiPy, this is accomplished by creating a solution
variable that explicitly retains its “old” value by specifying hasOld when you create it. The variable does not
move forward in time until it is explicity told to updateOld(). In order to compare the effects of different
numbers of sweeps, let us create a list of variables: phi[0] will be the variable that is actually being solved
and phi[1] through phi[4] will display the result of taking the corresponding number of sweeps (phi[1]
being equivalent to not sweeping at all).

>>> valueLeft = 1
>>> valueRight = 0
>>> phi = [
... CellVariable(name="solution variable",
... mesh=mesh,
... value=valueRight,
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... hasOld=1),

... CellVariable(name="1 sweep",

... mesh=mesh),

... CellVariable(name="2 sweeps",

... mesh=mesh),

... CellVariable(name="3 sweeps",

... mesh=mesh),

... CellVariable(name="4 sweeps",

... mesh=mesh)

... ]

If, for example,
D = D0(1− φ)

we would simply write Eq. (7.2) as

>>> D0 = 1
>>> eq = TransientTerm() == ImplicitDiffusionTerm(coeff=D0 * (1 - phi[0]))

Note

Because of the non-linearity, the Crank-Nicholson scheme does not work for this problem.

We apply the same boundary conditions that we used for the uniform diffusivity cases

>>> BCs = (FixedValue(faces=mesh.getFacesRight(), value=valueRight),
... FixedValue(faces=mesh.getFacesLeft(), value=valueLeft))

Although this problem does not have an exact transient solution, it can be solved in steady-state, with

φ(x) = 1−
√
x

L

>>> x = mesh.getCellCenters()[...,0]
>>> phiAnalytical.setValue(1. - sqrt(x/L))

We create a viewer to compare the different numbers of sweeps with the analytical solution from before.

>>> if __name__ == ’__main__’:
... viewer = viewers.make(vars=phi + [phiAnalytical],
... limits={’datamin’: 0., ’datamax’: 1.})
... viewer.plot()

As described above, an inner “sweep” loop is generally required for the solution of non-linear or multiple
equation sets. Often a conditional is required to exit this “sweep” loop given some convergence criteria.
Instead of using the solve() method equation, when sweeping, it is often useful to call sweep() instead.
The sweep() method behaves the same way as solve(), but returns the residual that can then be used as
part of the exit condition.
We now repeatedly run the problem with increasing numbers of sweeps.

>>> for sweeps in range(1,5):
... phi[0].setValue(valueRight)
... for step in range(steps):
... # only move forward in time once per time step
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... phi[0].updateOld()

...

... # but "sweep" many times per time step

... for sweep in range(sweeps):

... res = eq.sweep(var=phi[0],

... boundaryConditions=BCs,

... dt=timeStepDuration)

... if __name__ == ’__main__’:

... viewer.plot()

...

... # copy the final result into the appropriate display variable

... phi[sweeps].setValue(phi[0])

... if __name__ == ’__main__’:

... viewer.plot()

... raw_input("Implicit variable diffusity. %d sweep(s). \

... Residual = %f. Press <return> to proceed..." % (sweeps, (abs(res))))

As can be seen, sweeping does not dramatically change the result, but the “residual” of the equation (a
measure of how accurately it has been solved) drops about an order of magnitude with each additional
sweep.

Attention!

Choosing an optimal balance between the number of time steps, the number of sweeps, the number of solver
iterations, and the solver tolerance is more art than science and will require some experimentation on your part
for each new problem.

Finally, we can increase the number of steps to approach equilibrium, or we can just solve for it directly

>>> eq = ImplicitDiffusionTerm(coeff=D0 * (1 - phi[0]))

>>> phi[0].setValue(valueRight)
>>> res = 1e+10
>>> while res > 1e-6:
... res = eq.sweep(var=phi[0],
... boundaryConditions=BCs,
... dt=timeStepDuration)

>>> print phi[0].allclose(phiAnalytical, atol = 1e-1)
1

>>> if __name__ == ’__main__’:
... viewer.plot()
... raw_input("Implicit variable diffusity - steady-state. \
... Press <return> to proceed...")
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If this example had been written primarily as a script, instead of as documentation, we would delete every
line that does not begin with either “>>>” or “...”, and then delete those prefixes from the remaining lines,
leaving:

#!/usr/bin/env python

## This script was derived from
## ’examples/diffusion/mesh1D.py’

nx = 50
dx = 1.
from fipy.meshes.grid1D import Grid1D
mesh = Grid1D(nx = nx, dx = dx)
from fipy.variables.cellVariable import CellVariable
phi = CellVariable(name="solution variable",

mesh=mesh,
value=0)

.

.

.

eq = ImplicitDiffusionTerm(coeff=D0 * (1 - phi[0]))
phi[0].setValue(valueRight)
res = 1e+10
while res > 1e-6:

res = eq.sweep(var=phi[0],
boundaryConditions=BCs,
dt=timeStepDuration)
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print phi[0].allclose(phiAnalytical, atol = 1e-1)
# Expect:
# 1
#
if name == ’ main ’:

viewer.plot()
raw input("Implicit variable diffusity - steady-state. \

Press <return> to proceed...")

Your own scripts will tend to look like this, although you can always write them as doctest scripts if you
choose. You can obtain a plain script like this from some .../example.py by typing:

$ python setup.py copy script --From .../example.py --To myExample.py

at the command line.
Most of the FiPy examples will be a mixture of plain scripts and doctest documentation/tests.

7.2 Module examples.diffusion.mesh20x20

This example again solves a 1D diffusion problem as in examples/diffusion/mesh1D.py, but now on a
two-dimensional mesh:

>>> nx = 20
>>> ny = nx
>>> dx = 1.
>>> dy = dx
>>> from fipy.meshes.grid2D import Grid2D
>>> mesh = Grid2D(dx=dx, dy=dy, nx=nx, ny=ny)

We create a CellVariable and initialize it to zero:

>>> from fipy.variables.cellVariable import CellVariable
>>> phi = CellVariable(name = "solution variable",
... mesh = mesh,
... value = 0)

and then create a diffusion equation. This is solved by default with an iterative conjugate gradient solver.

>>> D = 1.
>>> from fipy.terms.transientTerm import TransientTerm
>>> from fipy.terms.implicitDiffusionTerm import ImplicitDiffusionTerm
>>> eq = TransientTerm() == ImplicitDiffusionTerm(coeff=D)

We apply Dirichlet boundary conditions

>>> valueLeft = 1
>>> valueRight = 0

to the left and right. Neumann boundary conditions are automatically applied to the top and bottom.

>>> from fipy.boundaryConditions.fixedValue import FixedValue
>>> BCs = (FixedValue(faces=mesh.getFacesLeft(),
... value=valueLeft),
... FixedValue(faces=mesh.getFacesRight(),
... value=valueRight))
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We create a viewer to see the results

>>> if __name__ == ’__main__’:
... from fipy import viewers
... viewer = viewers.make(vars=phi,
... limits={’datamin’: 0., ’datamax’: 1.})
... viewer.plot()

and solve the equation by repeatedly looping in time:

>>> timeStepDuration = 10 * 0.9 * dx**2 / (2 * D)
>>> steps = 10
>>> for step in range(steps):
... eq.solve(var=phi,
... boundaryConditions=BCs,
... dt=timeStepDuration)
... if __name__ == ’__main__’:
... viewer.plot()
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We can again test against the analytical solution φ = 1− erf(x/2
√
Dt).

>>> x = mesh.getCellCenters()[...,0]
>>> t = timeStepDuration * steps
>>> from fipy.tools.numerix import sqrt

>>> phiAnalytical = CellVariable(name="analytical value",
... mesh=mesh)

>>> try:
... from scipy.special import erf
... phiAnalytical.setValue(1 - erf(x / (2 * sqrt(D * t))))
... except ImportError:
... print "The SciPy library is not available to test the solution to \
... the transient diffusion equation"
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>>> print phi.allclose(phiAnalytical, atol = 4e-2)
1

>>> if __name__ == ’__main__’:
... raw_input("Implicit transient diffusion. Press <return> to proceed...")

We can also solve the steady-state problem directly

>>> ImplicitDiffusionTerm().solve(var=phi,
... boundaryConditions = BCs)
>>> if __name__ == ’__main__’:
... viewer.plot()
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and test the result against the expected linear composition profile:

>>> L = nx * dx
>>> x = mesh.getCellCenters()[...,0]
>>> analyticalArray = valueLeft + (valueRight - valueLeft) * x / L
>>> print phi.allclose(analyticalArray, rtol = 2e-10, atol = 2e-10)
1

>>> if __name__ == ’__main__’:
... raw_input("Implicit steady-state diffusion. Press <return> to proceed...")

7.3 Module examples.diffusion.circle

This example demonstrates how to solve a simple diffusion problem on a non-standard mesh with varying
boundary conditions. The gmsh package is used to create the mesh. Firstly, define some parameters for the
creation of the mesh,

>>> cellSize = 0.05
>>> radius = 1.

http://www.geuz.org/gmsh/
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The cellSize is the preferred edge length of each mesh element and the radius is the radius of the circular
mesh domain. In the following code section a file is created with the geometry that describes the mesh. For
details of how to write such geometry files for gmsh, see the gmsh manual.

>>> lines = [ ’cellSize = ’ + str(cellSize) + ’;\n’,
... ’radius = ’ + str(radius) + ’;\n’,
... ’Point(1) = {0, 0, 0, cellSize};\n’,
... ’Point(2) = {-radius, 0, 0, cellSize};\n’,
... ’Point(3) = {0, radius, 0, cellSize};\n’,
... ’Point(4) = {radius, 0, 0, cellSize};\n’,
... ’Point(5) = {0, -radius, 0, cellSize};\n’,
... ’Circle(6) = {2, 1, 3};\n’,
... ’Circle(7) = {3, 1, 4};\n’,
... ’Circle(8) = {4, 1, 5};\n’,
... ’Circle(9) = {5, 1, 2};\n’,
... ’Line Loop(10) = {6, 7, 8, 9} ;\n’,
... ’Plane Surface(11) = {10};\n’]

>>> import tempfile
>>> (f, geomName) = tempfile.mkstemp(’.geo’)
>>> file = open(geomName, ’w’)
>>> file.writelines(lines)
>>> file.close()
>>> import os
>>> os.close(f)

The temporary file created above is used by gmsh to mesh the geometrically defined region.

>>> import sys
>>> if sys.platform == ’win32’:
... meshName = ’tmp.msh’
... else:
... (f, meshName) = tempfile.mkstemp(’.msh’)
>>> os.system(’gmsh ’ + geomName + ’ -2 -v 0 -format msh -o ’ + meshName)
0
>>> if sys.platform != ’win32’:
... os.close(f)
>>> os.remove(geomName)

The mesh created by gmsh is then imported into FiPy using the GmshImporter2D object.

>>> from fipy.meshes.gmshImport import GmshImporter2D
>>> mesh = GmshImporter2D(meshName)
>>> os.remove(meshName)

Using this mesh, we can construct a solution variable

>>> from fipy.variables.cellVariable import CellVariable
>>> phi = CellVariable(name = "solution variable",
... mesh = mesh,
... value = 0)

http://www.geuz.org/gmsh/
http://www.geuz.org/gmsh/doc/texinfo/gmsh.html
http://www.geuz.org/gmsh/
http://www.geuz.org/gmsh/


Module examples.diffusion.circle 73

We can now create a viewer to see the mesh (only the Gist2DViewer is capable of displaying variables on
this sort of irregular mesh)

>>> viewer = None
>>> if __name__ == ’__main__’:
... try:
... from fipy.viewers.gistViewer.gist2DViewer import Gist2DViewer
... viewer = Gist2DViewer(vars=phi,
... limits={’datamin’: -1, ’datamax’: 1.})
... viewer.plotMesh()
... raw_input("Irregular circular mesh. Press <return> to proceed...")
... except:
... print "Unable to create a Gist2DViewer"
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We set up a transient diffusion equation

>>> D = 1.
>>> from fipy.terms.transientTerm import TransientTerm
>>> from fipy.terms.implicitDiffusionTerm import ImplicitDiffusionTerm
>>> eq = TransientTerm() == ImplicitDiffusionTerm(coeff=D)

The following line extracts the x coordinate values on the exterior faces. These are used as the boundary
condition fixed values.

>>> from fipy.tools import numerix
>>> exteriorXcoords = numerix.take(mesh.getFaceCenters()[...,0],
... mesh.getExteriorFaces())

>>> from fipy.boundaryConditions.fixedValue import FixedValue
>>> BCs = (FixedValue(faces=mesh.getExteriorFaces(), value=exteriorXcoords),)

We first step through the transient problem

>>> timeStepDuration = 10 * 0.9 * cellSize**2 / (2 * D)
>>> steps = 10
>>> for step in range(steps):
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... eq.solve(var=phi,

... boundaryConditions=BCs,

... dt=timeStepDuration)

... if viewer is not None:

... viewer.plot()
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If we wanted to plot or analyze the results of this calculation with another application, we could export
tab-separated-values with

from fipy.viewers.tsvViewer import TSVViewer
TSVViewer(vars=(phi, phi.getGrad())).plot(filename="myTSV.tsv")

x y solution variable solution variable_grad_x solution variable_grad_y

0.975559734792414 0.0755414402612554 0.964844363287199 -0.229687917881182 0.00757854476106331

0.0442864953037566 0.79191893162384 0.0375859836421991 -0.773936613923853 -0.205560697612547

0.0246775505084069 0.771959648896982 0.020853932412869 -0.723540342405813 -0.182589694334729

0.223345558247991 -0.807931073108895 0.203035857140125 -0.777466238738658 0.0401235242511506

-0.00726763301939488 -0.775978916110686 -0.00412895434496877 -0.650055516507232 -0.183112882869288

-0.0220279064527904 -0.187563765977912 -0.012771874945585 -0.35707168379437 -0.056072788439713

0.111223320911545 -0.679586798311355 0.0911595298310758 -0.613455176718145 0.0256182541329463

-0.78996770899909 -0.0173672729866294 -0.693887874335319 -1.00671109050419 -0.127611490372511

-0.703545986179876 -0.435813500559859 -0.635004192597412 -0.896203033957194 -0.00855563518923689

0.888641841567831 -0.408558914368324 0.877939107374768 -0.32195762184087 -0.22696791637322

0.38212257821916 -0.51732949653553 0.292889724306196 -0.854466141879776 0.199715815696975

-0.359068256998365 0.757882581524374 -0.323541041763627 -0.870534227755687 0.0792631912863636

-0.459673905457569 -0.701526587772079 -0.417577664032421 -0.725460726303266 -0.119132299176163

-0.338256179134518 -0.523565732643067 -0.254030052182524 -0.923505840608445 -0.192224240688976

0.87498754712638 0.174119064688993 0.836057900916614 -1.11590500805745 -0.211010116496191

-0.484106960369249 0.0705987421869745 -0.319827850867342 -0.867894407968447 0.051246727010685

-0.0221203060940465 -0.216026820080053 -0.0152729438559779 -0.341246696530392 -0.0538476142281317

The values are listed at the Cell centers. Particularly for irregular meshes, no specific ordering should be
relied upon. Vector quantities are listed in multiple columns, one for each mesh dimension.

This problem again has an analytical solution that depends on the error function, but it’s a bit more
complicated due to the varying boundary conditions and the different horizontal diffusion length at different
vertical positions

>>> x, y = mesh.getCellCenters()[...,0], mesh.getCellCenters()[...,1]
>>> t = timeStepDuration * steps

>>> phiAnalytical = CellVariable(name="analytical value",
... mesh=mesh)
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>>> from fipy.tools.numerix import sqrt, arcsin, cos
>>> x0 = radius * cos(arcsin(y))
>>> try:
... from scipy.special import erf
... phiAnalytical.setValue(x0 * (erf((x0+x) / (2 * sqrt(D * t)))
... - erf((x0-x) / (2 * sqrt(D * t)))))
... except ImportError:
... print "The SciPy library is not available to test the solution to \
... the transient diffusion equation"

>>> print phi.allclose(phiAnalytical, atol = 7e-2)
1

>>> if __name__ == ’__main__’:
... raw_input("Transient diffusion. Press <return> to proceed...")

As in the earlier examples, we can also directly solve the steady-state diffusion problem.

>>> ImplicitDiffusionTerm(coeff=D).solve(var=phi,
... boundaryConditions=BCs)

The values at the elements should be equal to their x coordinate

>>> print phi.allclose(mesh.getCellCenters()[...,0], atol = 0.02)
1

Display the results if run as a script.

>>> if viewer is not None:
... viewer.plot()
... raw_input("Steady-state diffusion. Press <return> to proceed...")
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7.4 Module examples.diffusion.electrostatics

The Poisson equation is a particular example of the steady-state diffusion equation. We examine a few cases
in one dimension.

>>> nx = 200
>>> dx = 0.01
>>> L = nx * dx
>>> from fipy.meshes.grid1D import Grid1D
>>> mesh = Grid1D(dx = dx, nx = nx)

Given the electrostatic potential φ,

>>> from fipy.variables.cellVariable import CellVariable
>>> potential = CellVariable(mesh=mesh, name=’potential’, value=0.)

the permittivity ε,

>>> permittivity = 1

the concentration Cj of the jth component with valence zj (we consider only a single component C−e with
valence with ze− = −1)

>>> electrons = CellVariable(mesh=mesh, name=’e-’)
>>> electrons.valence = -1

and the charge density ρ,

>>> charge = electrons * electrons.valence
>>> charge.name = "charge"

The dimensionless Poisson equation is

∇ · (ε∇φ) = −ρ = −
n∑
j=1

zjCj

>>> from fipy.terms.implicitDiffusionTerm import ImplicitDiffusionTerm
>>> potential.equation = ImplicitDiffusionTerm(coeff = permittivity) \
... + charge == 0

Because this equation admits an infinite number of potential profiles, we must constrain the solution by
fixing the potential at one point:

>>> from fipy.boundaryConditions.fixedValue import FixedValue
>>> bcs = (FixedValue(faces=mesh.getFacesLeft(), value=0),)

First, we obtain a uniform charge distribution by setting a uniform concentration of electrons Ce− = 1.

>>> electrons.setValue(1.)

and we solve for the electrostatic potential

>>> potential.equation.solve(var=potential,
... boundaryConditions=bcs)
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This problem has the analytical solution

ψ(x) =
x2

2
− 2x

>>> x = mesh.getCellCenters()[:,0]
>>> analytical = CellVariable(mesh=mesh, name="analytical solution",
... value=(x**2)/2 - 2*x)

which has been satisifactorily obtained

>>> print potential.allclose(analytical, rtol = 2e-5, atol = 2e-5)
1

If we are running the example interactively, we view the result

>>> if __name__ == ’__main__’:
... import fipy.viewers
... viewer = fipy.viewers.make(vars=(charge, potential, analytical))
... viewer.plot()
... raw_input("Press any key to continue...")
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Next, we segregate all of the electrons to right side of the domain

Ce− =

0 for x ≤ L/2,

1 for x > L/2.

>>> x = mesh.getCellCenters()[...,0]
>>> electrons.setValue(0.)
>>> electrons.setValue(1., where=x > L / 2.)

and again solve for the electrostatic potential

>>> potential.equation.solve(var=potential,
... boundaryConditions=bcs)
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which now has the analytical solution

ψ(x) =

−x for x ≤ L/2,
(x−1)2

2 − x for x > L/2.

>>> analytical.setValue(-x)
>>> analytical.setValue(((x-1)**2)/2 - x, where=x > L/2)

>>> print potential.allclose(analytical, rtol = 2e-5, atol = 2e-5)
1

and again view the result

>>> if __name__ == ’__main__’:
... viewer.plot()
... raw_input("Press any key to continue...")
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Finally, we segregate all of the electrons to the left side of the domain

Ce− =

1 for x ≤ L/2,

0 for x > L/2.

>>> electrons.setValue(1.)
>>> electrons.setValue(0., where=x > L / 2.)

and again solve for the electrostatic potential

>>> potential.equation.solve(var=potential,
... boundaryConditions=bcs)
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which has the analytical solution

ψ(x) =

x2

2 − x for x ≤ L/2,

− 1
2 for x > L/2.

We again verify that the correct equilibrium is attained

>>> analytical.setValue((x**2)/2 - x)
>>> analytical.setValue(-0.5, where=x > L / 2)

>>> print potential.allclose(analytical, rtol = 2e-5, atol = 2e-5)
1

and once again view the result

>>> if __name__ == ’__main__’:
... viewer.plot()
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7.5 Module examples.diffusion.nthOrder.input4thOrder1D

This example uses the ImplicitDiffusionTerm class to solve the equation

∂4φ

∂x4
= 0

on a 1D mesh of length

>>> L = 1000.

We create an appropriate mesh
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>>> nx = 1000
>>> dx = L / nx
>>> from fipy.meshes.grid1D import Grid1D
>>> mesh = Grid1D(dx=dx, nx=nx)

and initialize the solution variable to 0

>>> from fipy.variables.cellVariable import CellVariable
>>> var = CellVariable(mesh=mesh, name=’solution variable’)

For this problem, we impose the boundary conditions:

φ = α1 at x = 0
∂φ

∂x
= α2 at x = L

∂2φ

∂x2
= α3 at x = 0

∂3φ

∂x3
= α4 at x = L.

or

>>> alpha1 = 2.
>>> alpha2 = 1.
>>> alpha3 = 4.
>>> alpha4 = -3.

>>> from fipy.boundaryConditions.fixedValue import FixedValue
>>> from fipy.boundaryConditions.fixedFlux import FixedFlux
>>> from fipy.boundaryConditions.nthOrderBoundaryCondition \
... import NthOrderBoundaryCondition
>>> BCs = (FixedValue(faces=mesh.getFacesLeft(), value=alpha1),
... FixedFlux(faces=mesh.getFacesRight(), value=alpha2),
... NthOrderBoundaryCondition(faces=mesh.getFacesLeft(), value=alpha3, order=2),
... NthOrderBoundaryCondition(faces=mesh.getFacesRight(), value=alpha4, order=3))

We initialize the steady-state equation

>>> from fipy.terms.implicitDiffusionTerm import ImplicitDiffusionTerm
>>> eq = ImplicitDiffusionTerm(coeff=(1, 1)) == 0

and use the LinearLUSolver for stability.

>>> from fipy.solvers.linearLUSolver import LinearLUSolver

We perform one implicit timestep to achieve steady state

>>> eq.solve(var=var,
... boundaryConditions=BCs,
... solver=LinearLUSolver(tolerance=1e-11))
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The analytical solution is:

φ =
α4

6
x3 +

α3

2
x2 +

(
α2 −

α4

2
L2 − α3L

)
x+ α1

or

>>> analytical = CellVariable(mesh=mesh, name=’analytical value’)
>>> x = mesh.getCellCenters()[:,0]
>>> analytical.setValue(alpha4 / 6. * x**3 + alpha3 / 2. * x**2 + \
... (alpha2 - alpha4 / 2. * L**2 - alpha3 * L) * x + alpha1)
>>> print var.allclose(analytical, rtol=1e-4)
1

If the problem is run interactively, we can view the result:

>>> if __name__ == ’__main__’:
... from fipy.viewers import make
... viewer = make(vars=(var, analytical))
... viewer.plot()
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Convection Examples

8.1 Module examples.convection.exponential1D.input

This example solves the steady-state convection-diffusion equation given by:

∇ · (D∇φ+ ~uφ) = 0

with coefficients D = 1 and ~u = (10, ), or

>>> diffCoeff = 1.
>>> convCoeff = (10.,)

We define a 1D mesh

>>> L = 10.
>>> nx = 10
>>> from fipy.meshes.grid1D import Grid1D
>>> mesh = Grid1D(dx=L / nx, nx=nx)

and impose the boundary conditions

φ =

0 at x = 0,

1 at x = L,

or

>>> valueLeft = 0.
>>> valueRight = 1.
>>> from fipy.boundaryConditions.fixedValue import FixedValue
>>> boundaryConditions = (
... FixedValue(faces=mesh.getFacesLeft(), value=valueLeft),
... FixedValue(faces=mesh.getFacesRight(), value=valueRight),
... )

The solution variable is initialized to valueLeft:

>>> from fipy.variables.cellVariable import CellVariable
>>> var = CellVariable(mesh=mesh, name = "variable")

The equation is created with the ImplicitDiffusionTerm and ExponentialConvectionTerm. The scheme
used by the convection term needs to calculate a Peclet number and thus the diffusion term instance must
be passed to the convection term.

>>> from fipy.terms.implicitDiffusionTerm import ImplicitDiffusionTerm
>>> diffTerm = ImplicitDiffusionTerm(coeff=diffCoeff)
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>>> from fipy.terms.exponentialConvectionTerm \
... import ExponentialConvectionTerm
>>> eq = diffTerm + ExponentialConvectionTerm(coeff=convCoeff,
... diffusionTerm=diffTerm)

More details of the benefits and drawbacks of each type of convection term can be found in Section 3.5
“Numerical Schemes”.
Essentially, the ExponentialConvectionTerm and PowerLawConvectionTerm will both handle most types
of convection-diffusion cases, with the PowerLawConvectionTerm being more efficient.
We solve the equation

>>> eq.solve(var=var, boundaryConditions=boundaryConditions)

and test the solution against the analytical result

φ =
1− exp(−uxx/D)
1− exp(−uxL/D)

or

>>> axis = 0
>>> x = mesh.getCellCenters()[:,axis]
>>> from fipy.tools.numerix import exp
>>> CC = 1. - exp(-convCoeff[axis] * x / diffCoeff)
>>> DD = 1. - exp(-convCoeff[axis] * L / diffCoeff)
>>> analyticalArray = CC / DD
>>> print var.allclose(analyticalArray)
1

If the problem is run interactively, we can view the result:

>>> if __name__ == ’__main__’:
... from fipy.viewers import make
... viewer = make(vars=var)
... viewer.plot()

8.2 Module examples.convection.exponential1DSource.input

Like examples/diffusion/convection/exponential1D/input.py this example solves a steady-state
convection-diffusion equation, but adds a constant source, S0 = 1, such that

∇ · (D∇φ+ ~uφ) + S0 = 0.

>>> diffCoeff = 1.
>>> convCoeff = (10.,)
>>> sourceCoeff = 1.

We define a 1D mesh

>>> nx = 1000
>>> L = 10.
>>> from fipy.meshes.grid1D import Grid1D
>>> mesh = Grid1D(dx=L / 1000, nx=nx)
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and impose the boundary conditions

φ =

0 at x = 0,

1 at x = L,

or

>>> valueLeft = 0.
>>> valueRight = 1.
>>> from fipy.boundaryConditions.fixedValue import FixedValue
>>> boundaryConditions = (
... FixedValue(faces=mesh.getFacesRight(), value=valueRight),
... FixedValue(faces=mesh.getFacesLeft(), value=valueLeft),
... )

The solution variable is initialized to valueLeft:

>>> from fipy.variables.cellVariable import CellVariable
>>> var = CellVariable(name="variable", mesh=mesh)

We define the convection-diffusion equation with source

>>> from fipy.terms.implicitDiffusionTerm import ImplicitDiffusionTerm
>>> from fipy.terms.exponentialConvectionTerm \
... import ExponentialConvectionTerm
>>> diffTerm = ImplicitDiffusionTerm(coeff=diffCoeff)
>>> eq = diffTerm \
... + ExponentialConvectionTerm(coeff=convCoeff,
... diffusionTerm=diffTerm) \
... + sourceCoeff

>>> from fipy.solvers.linearLUSolver import LinearLUSolver
>>> eq.solve(var = var,
... boundaryConditions = boundaryConditions,
... solver = LinearLUSolver(tolerance = 1.e-15))

and test the solution against the analytical result:

φ = −S0x

ux
+
(

1 +
S0x

ux

)
1− exp(−uxx/D)
1− exp(−uxL/D)

or

>>> axis = 0
>>> x = mesh.getCellCenters()[:,axis]
>>> AA = -sourceCoeff * x / convCoeff[axis]
>>> BB = 1. + sourceCoeff * L / convCoeff[axis]
>>> from fipy.tools.numerix import exp
>>> CC = 1. - exp(-convCoeff[axis] * x / diffCoeff)
>>> DD = 1. - exp(-convCoeff[axis] * L / diffCoeff)
>>> analyticalArray = AA + BB * CC / DD
>>> print var.allclose(analyticalArray, rtol=1e-4, atol=1e-4)
1
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If the problem is run interactively, we can view the result:

>>> if __name__ == ’__main__’:
... from fipy.viewers import make
... viewer = make(vars=var)
... viewer.plot()



Phase Field Examples

The phase field method is a “diffuse interface” technique for modeling phase transformations and interface
motion. Several good review articles have been written on the subject [2, 3, 4].

9.1 Module examples.phase.simple.input

To run this example from the base FiPy directory, type examples/phase/simple/input.py at the command
line. A viewer object should appear and, after being prompted to step through the different examples, the
word finished in the terminal.
This example takes the user through assembling a simple problem with FiPy. It describes a steady 1D phase
field problem with no-flux boundary conditions such that,

1
Mφ

∂φ

∂t
= κφ∇2φ− ∂f

∂φ
(9.1)

For solidification problems, the Helmholtz free energy is frequently given by

f(φ, T ) =
W

2
g(φ) + Lv

T − TM
TM

p(φ).

where W is the double-well barrier height between phases, Lv is the latent heat, T is the temperature, and
TM is the melting point. One possible choice for the double-well function is

g(φ) = φ2(1− φ)2

and for the interpolation function is

p(φ) = φ3(6φ2 − 15φ+ 10).

We create a 1D solution mesh

>>> L = 1.
>>> nx = 400
>>> dx = L / nx

>>> from fipy.meshes.grid1D import Grid1D
>>> mesh = Grid1D(dx = dx, nx = nx)

We create the phase field variable

>>> from fipy.variables.cellVariable import CellVariable
>>> phase = CellVariable(name = "phase",
... mesh = mesh)
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and set a step-function initial condition

φ =

1 for x ≤ L/2
0 for x > L/2

at t = 0

>>> x = mesh.getCellCenters()[...,0]
>>> phase.setValue(1.)
>>> phase.setValue(0., where=x > L/2)

If we are running interactively, we’ll want a viewer to see the results

>>> if __name__ == ’__main__’:
... import fipy.viewers
... viewer = fipy.viewers.make(vars = (phase,))
... viewer.plot()
... raw_input("Initial condition. Press <return> to proceed...")

We choose the parameter values,

>>> kappa = 0.0025
>>> W = 1.
>>> Lv = 1.
>>> Tm = 1.
>>> T = Tm
>>> enthalpy = Lv * (T - Tm) / Tm

We build the equation by assembling the appropriate terms. Since, with T = TM we are interested in a
steady-state solution, we omit the transient term (1/Mφ)∂φ∂t . The analytical solution for this steady-state
phase field problem, in an infinite domain, is

φ =
1
2

[
1− tanh

x− L/2
2
√
κ/W

]
(9.2)

or
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>>> x = mesh.getCellCenters()[:,0]
>>> from fipy.tools.numerix import tanh, sqrt
>>> analyticalArray = 0.5*(1 - tanh((x - L/2)/(2*sqrt(kappa/W))))

We treat the diffusion term κφ∇2φ implicitly,

>>> from fipy.terms.implicitDiffusionTerm import ImplicitDiffusionTerm
>>> diffusionTerm = ImplicitDiffusionTerm(coeff = kappa)

Note

“Diffusion” in FiPy is not limited to the movement of atoms, but rather refers to the spontaneous spreading of
any quantity (e.g., solute, temperature, or in this case “phase”) by flow “down” the gradient of that quantity.

The source term is

S = −∂f
∂φ

= −W
2
g′(φ)− LT − TM

TM
p′(φ)

= −
[
Wφ(1− φ)(1− 2φ) + L

T − TM
TM

30φ2(1− φ)2

]
= mφφ(1− φ)

where mφ ≡ −[W (1− 2φ) + 30φ(1− φ)LT−TM

TM
]. The simplest approach is to add this source explicitly

>>> mPhi = -((1 - 2 * phase) * W + 30 * phase * (1 - phase) * enthalpy)
>>> S0 = mPhi * phase * (1 - phase)
>>> eq = S0 + diffusionTerm

After solving this equation

>>> eq.solve(var = phase)

we obtain the surprising result that φ is zero everywhere.

>>> if __name__ == ’__main__’:
... viewer.plot()
... raw_input("Fully explicit source. Press <return> to proceed...")
>>> print phase.allclose(analyticalArray, rtol = 1e-4, atol = 1e-4)
0
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On inspection, we can see that this occurs because, for our step-function initial condition, mφ = 0 everwhere,
hence we are actually only solving the simple implicit diffusion equation κφ∇2φ = 0, which has exactly the
uninteresting solution we obtained.
The resolution to this problem is to apply relaxation to obtain the desired answer, i.e., the solution is allowed
to relax in time from the initial condition to the desired equilibrium solution. To do so, we reintroduce the
transient term from Equation (9.1)

>>> from fipy.terms.transientTerm import TransientTerm
>>> eq = TransientTerm() == diffusionTerm + S0

>>> phase.setValue(1.)
>>> phase.setValue(0., where=x > L/2)

>>> for i in range(13):
... eq.solve(var = phase)
... if __name__ == ’__main__’:
... viewer.plot()
>>> if __name__ == ’__main__’:
... raw_input("Relaxation, explicit. Press <return> to proceed...")

After 13 time steps, the solution has converged to the analytical solution

>>> print phase.allclose(analyticalArray, rtol = 1e-4, atol = 1e-4)
1

Note

The solution is only found accurate to ≈ 4.3× 10−5 because the infinite-domain analytical solution (9.2) is not
an exact representation for the solution in a finite domain of length L.

Setting fixed-value boundary conditions of 1 and 0 would still require the relaxation method with the fully
explicit source.
Solution performance can be improved if we exploit the dependence of the source on φ. By doing so, we
can make the source semi-implicit, improving the rate of convergence over the fully explicit approach. The
source can only be semi-implicit because we employ sparse linear algebra routines to solve the PDEs, i.e.,
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there is no fully implicit way to represent a term like φ4 in the linear set of equations M~φ − ~b = 0. By
linearizing a source as S = S0 − S1φ, we make it more implicit by adding the coefficient S1 to the matrix
diagonal. For numerical stability, this linear coefficient must never be negative.
There are an infinite number of choices for this linearization, but many do not converge very well. One
choice is that used by Ryo Kobayashi:

>>> from fipy.terms.implicitSourceTerm import ImplicitSourceTerm
>>> S0 = mPhi * phase * (mPhi > 0)
>>> S1 = mPhi * ((mPhi < 0) - phase)
>>> implicitSource = ImplicitSourceTerm(coeff = S1)
>>> eq = diffusionTerm + S0 + implicitSource

Note

Because mPhi is a variable field, the quantities (mPhi > 0) and (mPhi < 0) evaluate to variable fields of
ones and zeroes, instead of simple boolean values.

This expression converges to the same value given by the explicit relaxation approach, but in only 8 sweeps
(note that because there is no transient term, these sweeps are not time steps, but rather repeated iterations
at the same time step to reach a converged solution).

Note

We use solve() instead of sweep() because we don’t care about the residual. Either function would work,
but solve() is a bit faster.

>>> phase.setValue(1.)
>>> phase.setValue(0., where=x > L/2)

>>> for i in range(8):
... eq.solve(var = phase)
>>> if __name__ == ’__main__’:
... viewer.plot()
... raw_input("Kobayashi, semi-implicit. Press <return> to proceed...")
>>> print phase.allclose(analyticalArray, rtol = 1e-4, atol = 1e-4)
1

In general, the best convergence is obtained when the linearization gives a good representation of the relation-
ship between the source and the dependent variable. The best practical advice is to perform a Taylor expan-
sion of the source about the previous value of the dependent variable such that S = Sold + ∂S

∂φ

∣∣∣
old

(φ−φold) =

(S − ∂S
∂φφ)old + ∂S

∂φ

∣∣∣
old
φ. Now, if our source term is represented by S = S0 + S1φ, then S1 = ∂S

∂φ

∣∣∣
old

and

S0 = (S − ∂S
∂φφ)old = Sold − S1φold. In this way, the linearized source will be tangent to the curve of the

actual source as a function of the dependendent variable.
For our source, S = mφφ(1− φ),

∂S

∂φ
=
∂mφ

∂φ
φ(1− φ) +mφ(1− 2φ)

and

∂mφ

∂φ
= 2W − 30(1− 2φ)L

T − TM
TM

,

or
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>>> dmPhidPhi = 2 * W - 30 * (1 - 2 * phase) * enthalpy
>>> S1 = dmPhidPhi * phase * (1 - phase) + mPhi * (1 - 2 * phase)
>>> S0 = mPhi * phase * (1 - phase) - S1 * phase * (S1 < 0)
>>> implicitSource = ImplicitSourceTerm(coeff = S1 * (S1 < 0))
>>> eq = diffusionTerm + S0 + implicitSource

Using this scheme, where the coefficient of the implicit source term is tangent to the source, we reach
convergence in only 5 sweeps

>>> phase.setValue(1.)
>>> phase.setValue(0., where=x > L/2)

>>> for i in range(5):
... eq.solve(var = phase)
>>> if __name__ == ’__main__’:
... viewer.plot()
... raw_input("Tangent, semi-implicit. Press <return> to proceed...")
>>> print phase.allclose(analyticalArray, rtol = 1e-4, atol = 1e-4)
1

Although, for this simple problem, there is no appreciable difference in run-time between the fully explicit
source and the optimized semi-implicit source, the benefit of 60% fewer sweeps should be obvious for larger
systems and longer iterations.

This example has focused on just the region of the phase field interface in equilibrium. Problems of interest,
though, usually involve the dynamics of one phase transforming to another. To that end, let us recast the
problem using physical parameters and dimensions. We’ll need a new mesh

>>> nx = 400
>>> dx = 5e-6 # cm
>>> L = nx * dx

>>> mesh = Grid1D(dx = dx, nx = nx)

and thus must redeclare φ on the new mesh

>>> phase = CellVariable(name="phase",
... mesh=mesh,
... hasOld=1)
>>> x = mesh.getCellCenters()[...,0]
>>> phase.setValue(1.)
>>> phase.setValue(0., where=x > L/2)

We choose the parameter values appropriate for nickel, given in [26]

>>> Lv = 2350 # J / cm**3
>>> Tm = 1728. # K
>>> from fipy.variables.variable import Variable
>>> T = Variable(value=Tm)
>>> enthalpy = Lv * (T - Tm) / Tm # J / cm**3
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The parameters of the phase field model can be related to the surface energy σ and the interfacial thickness
δ by

κ = 6σδ

W =
6σ
δ

Mφ =
Tmβ

6Lδ
.

We take δ ≈ ∆x.

>>> delta = 1.5 * dx
>>> sigma = 3.7e-5 # J / cm**2
>>> beta = 0.33 # cm / (K s)
>>> kappa = 6 * sigma * delta # J / cm
>>> W = 6 * sigma / delta # J / cm**3
>>> Mphi = Tm * beta / (6. * Lv * delta) # cm**3 / (J s)

>>> analyticalArray = CellVariable(name="tanh", mesh=mesh,
... value=0.5 * (1 - tanh((x - (L / 2. + L / 10.))
... / (2 * delta))))

and make a new viewer

>>> if __name__ == ’__main__’:
... viewer2 = fipy.viewers.make(vars = (phase, analyticalArray))
... viewer2.plot()

Now we can redefine the transient phase field equation, using the optimal form of the source term shown
above

>>> mPhi = -((1 - 2 * phase) * W + 30 * phase * (1 - phase) * enthalpy)
>>> dmPhidPhi = 2 * W - 30 * (1 - 2 * phase) * enthalpy
>>> S1 = dmPhidPhi * phase * (1 - phase) + mPhi * (1 - 2 * phase)
>>> S0 = mPhi * phase * (1 - phase) - S1 * phase * (S1 < 0)
>>> eq = TransientTerm(coeff=1/Mphi) == ImplicitDiffusionTerm(coeff=kappa) \
... + S0 + ImplicitSourceTerm(coeff = S1 * (S1 < 0))

In order to separate the effect of forming the phase field interface from the kinetics of moving it, we first
equilibrate at the melting point. We now use the “sweep()” method instead of “solve()” because we require
the residual.

>>> timeStep = 1e-6
>>> for i in range(10):
... phase.updateOld()
... res = 1e+10
... while res > 1e-5:
... res = eq.sweep(var=phase, dt=timeStep)
>>> if __name__ == ’__main__’:
... viewer2.plot()

and then quench by 1 K
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>>> T.setValue(T() - 1)

In order to have a stable numerical solution, the interface must not move more than one grid point per time
step, we thus set the timestep according to the grid spacing ∆x, the linear kinetic coefficient β, and the
undercooling |Tm − T |
Again we use the “sweep()” method as a replacement for “solve()”.

>>> velocity = beta * abs(Tm - T()) # cm / s
>>> timeStep = .1 * dx / velocity # s
>>> elapsed = 0
>>> while elapsed < 0.1 * L / velocity:
... phase.updateOld()
... res = 1e+10
... while res > 1e-5:
... res = eq.sweep(var=phase, dt=timeStep)
... elapsed += timeStep
... if __name__ == ’__main__’:
... viewer2.plot()

A hyperbolic tangent is not an exact steady-state solution given the quintic polynomial we chose for the p()
function, but it gives a reasonable approximation.

>>> print phase.allclose(analyticalArray, rtol = 5, atol = 2e-3)
1

If we had made another common choice of p(φ) = φ2(3− 2φ), we would have found much better agreement,
as that case does give an exact tanh solution in steady state. If SciPy is available, another way to compare
against the expected result is to do a least-squared fit to determine the interface velocity and thickness

>>> try:
... def tanhResiduals(p, y, x, t):
... V, d = p
... return y - 0.5 * (1 - tanh((x - V * t - L / 2.) / (2*d)))
... from scipy.optimize import leastsq
... x = mesh.getCellCenters()[...,0]
... (V_fit, d_fit), msg = leastsq(tanhResiduals, [L/2., delta],
... args=(phase(), x, elapsed))
... except ImportError:
... V_fit = d_fit = 0
... print "The SciPy library is unavailable to fit the interface \
... thickness and velocity"

>>> print abs(1 - V_fit / velocity) < 3.3e-2
True
>>> print abs(1 - d_fit / delta) < 2e-2
True

>>> if __name__ == ’__main__’:
... raw_input("Dimensional, semi-implicit. Press <return> to proceed...")
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9.2 Module examples.phase.binary

It is straightforward to extend a phase field model to include binary alloys. As in
examples.phase.simple.input, we will examine a 1D problem

>>> nx = 400
>>> dx = 5e-6 # cm
>>> L = nx * dx
>>> from fipy.meshes.grid1D import Grid1D
>>> mesh = Grid1D(dx=dx, nx=nx)

The Helmholtz free energy functional can be written as the integral [2, 4, 27]

F (φ,C, T ) =
∫
V

{
f(φ,C, T ) +

κφ
2
|∇φ|2 +

κC
2
|∇C|2

}
dV

over the volume V as a function of phase1 φ

>>> from fipy.variables.cellVariable import CellVariable
>>> phase = CellVariable(name="phase", mesh=mesh, hasOld=1)

composition C

>>> C = CellVariable(name="composition", mesh=mesh, hasOld=1)

and temperature2 T

>>> from fipy.variables.variable import Variable
>>> T = Variable(name="temperature")

1We will find that we need to “sweep” this non-linear problem (see e.g. the composition-dependent diffusivity example in
examples.diffusion.mesh1D), so we declare φ and C to retain an “old” value.

2we are going to want to examine different temperatures in this example, so we declare T as a Variable
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Frequently, the gradient energy term in concentration is ignored and we can derive governing equations

∂φ

∂t
= Mφ

(
κφ∇2φ− ∂f

∂φ

)
(9.3)

for phase and
∂C

∂t
= ∇ ·

(
MC∇

∂f

∂C

)
(9.4)

for solute.
The free energy density f(φ,C, T ) can be constructed in many different ways. One approach is to construct
free energy densities for each of the pure compoonents, as functions of phase, e.g.

fA(φ, T ) = p(φ)fSA(T ) + (1− p(φ)) fLA(T ) +
WA

2
g(φ)

where fLA(T ), fLB(T ), fSA(T ), and fSB(T ) are the free energy densities of the pure components. There are a
variety of choices for the interpolation function p(φ) and the barrier function g(φ), such as those shown in
examples.phase.simple.input

>>> def p(phi):
... return phi**3 * (6 * phi**2 - 15 * phi + 10)

>>> def g(phi):
... return (phi * (1 - phi))**2

The desired thermodynamic model can then be applied to obtain f(φ,C, T ), such as for a regular solution,

f(φ,C, T ) = (1− C)fA(φ, T ) + CfB(φ, T )
+RT [(1− C) ln(1− C) + C lnC] + C(1− C) [ΩSp(φ) + ΩL (1− p(φ))]

where

>>> R = 8.314 # J / (mol K)

is the gas constant and ΩS and ΩL are the regular solution interaction parameters for solid and liquid.
Another approach is useful when the free energy densities fL(C, T ) and fS(C, T ) of the alloy in the solid and
liquid phases are known. This might be the case when the two different phases have different thermodynamic
models or when one or both is obtained from a Calphad code. In this case, we can construct

f(φ,C, T ) = p(φ)fS(C, T ) + (1− p(φ)) fL(C, T ) +
[
(1− C)

WA

2
+ C

WB

2

]
g(φ).

When the thermodynamic models are the same in both phases, both approaches should yield the same result.
We choose the first approach and make the simplifying assumptions of an ideal solution and that

fLA(T ) = 0

fSA(T )− fLA(T ) =
LA
(
T − TAM

)
TAM

and likewise for component B.
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>>> LA = 2350. # J / cm**3
>>> LB = 1728. # J / cm**3
>>> TmA = 1728. # K
>>> TmB = 1358. # K

>>> enthalpyA = LA * (T - TmA) / TmA
>>> enthalpyB = LB * (T - TmB) / TmB

This relates the difference between the free energy densities of the pure solid and pure liquid phases to the
latent heat LA and the pure component melting point TAM , such that

fA(φ, T ) =
LA
(
T − TAM

)
TAM

p(φ) +
WA

2
g(φ).

With these assumptions

∂f

∂φ
= (1− C)

∂fA
∂φ

+ C
∂fA
∂φ

=

{
(1− C)

LA
(
T − TAM

)
TAM

+ C
LB
(
T − TBM

)
TBM

}
p′(φ) +

{
(1− C)

WA

2
+ C

WB

2

}
g′(φ) (9.5)

and

∂f

∂C
=
[
fB(φ, T ) +

RT

Vm
lnC

]
−
[
fA(φ, T ) +

RT

Vm
ln(1− C)

]
= [µB(φ,C, T )− µA(φ,C, T )] /Vm (9.6)

where µA and µB are the classical chemical potentials for the binary species. p′(φ) and g′(φ) are the partial
derivatives of of p and g with respect to φ

>>> def pPrime(phi):
... return 30. * g(phi)

>>> def gPrime(phi):
... return 2. * phi * (1 - phi) * (1 - 2 * phi)

Vm is the molar volume, which we take to be independent of concentration and phase

>>> Vm = 7.42 # cm**3 / mol

On comparison with examples.phase.simple.input, we can see that the present form of the phase field
equation is identical to the one found earlier, with the source now composed of the concentration-weighted
average of the source for either pure component. We let the pure component barriers equal the previous
value

>>> deltaA = deltaB = 1.5 * dx
>>> sigmaA = 3.7e-5 # J / cm**2
>>> sigmaB = 2.9e-5 # J / cm**2
>>> betaA = 0.33 # cm / (K s)
>>> betaB = 0.39 # cm / (K s)
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>>> kappaA = 6 * sigmaA * deltaA # J / cm
>>> kappaB = 6 * sigmaB * deltaB # J / cm
>>> WA = 6 * sigmaA / deltaA # J / cm**3
>>> WB = 6 * sigmaB / deltaB # J / cm**3

and define the averages

>>> W = (1 - C) * WA / 2. + C * WB / 2.
>>> enthalpy = (1 - C) * enthalpyA + C * enthalpyB

We can now linearize the source exactly as before

>>> mPhi = -((1 - 2 * phase) * W + 30 * phase * (1 - phase) * enthalpy)
>>> dmPhidPhi = 2 * W - 30 * (1 - 2 * phase) * enthalpy
>>> S1 = dmPhidPhi * phase * (1 - phase) + mPhi * (1 - 2 * phase)
>>> S0 = mPhi * phase * (1 - phase) - S1 * phase * (S1 < 0)

Using the same gradient energy coefficient and phase field mobility

>>> kappa = (1 - C) * kappaA + C * kappaB
>>> Mphi = TmA * betaA / (6 * LA * deltaA)

we define the phase field equation

>>> from fipy.terms.transientTerm import TransientTerm
>>> from fipy.terms.implicitDiffusionTerm import ImplicitDiffusionTerm
>>> from fipy.terms.implicitSourceTerm import ImplicitSourceTerm

>>> phaseEq = TransientTerm(1/Mphi) == ImplicitDiffusionTerm(coeff=kappa) \
... + S0 + ImplicitSourceTerm(coeff=S1 * (S1 < 0))

When coding explicitly, it is typical to simply write a function to evaluate the chemical potentials µA and
µB and then perform the finite differences necessary to calculate their gradient and divergence, e.g.,

def deltaChemPot(phase, C, T):
return ((Vm * (enthalpyB * p(phase) + WA * g(phase)) + R * T * log(1 - C)) -

(Vm * (enthalpyA * p(phase) + WA * g(phase)) + R * T * log(C)))

for j in range(faces):
flux[j] = ((Mc[j+.5] + Mc[j-.5]) / 2) \
* (deltaChemPot(phase[j+.5], C[j+.5], T) \
- deltaChemPot(phase[j-.5], C[j-.5], T)) / dx

for j in range(cells):
diffusion = (flux[j+.5] - flux[j-.5]) / dx

where we neglect the details of the outer boundaries (j = 0 and j = N) or exactly how to translate j+.5
or j-.5 into an array index, much less the complexities of higher dimensions. FiPy can handle all of these
issues automatically, so we could just write:
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chemPotA = Vm * (enthalpyA * p(phase) + WA * g(phase)) + R * T * log(C)
chemPotB = Vm * (enthalpyB * p(phase) + WB * g(phase)) + R * T * log(1-C)
flux = Mc * (chemPotB - chemPotA).getFaceGrad()
eq = TransientTerm() == flux.getDivergence()

Although the second syntax would essentially work as written, such an explicit implementation would be
very slow. In order to take advantage of FiPy’s implicit solvers, it is necessary to reduce Eq. (9.4) to the
canonical form of Eq. (3.2), hence we must expand Eq. (9.6) as

∂f

∂C
=

[
LB
(
T − TBM

)
TBM

−
LA
(
T − TAM

)
TAM

]
p(φ) +

RT

Vm
[lnC − ln(1− C)] +

WB −WA

2
g(φ)

In either bulk phase, ∇p(φ) = ∇g(φ) = 0, so we can then reduce Eq. (9.4) to

∂C

∂t
= ∇ ·

(
MC∇

{
RT

Vm
[lnC − ln(1− C)]

})
= ∇ ·

[
MCRT

C(1− C)Vm
∇C

]
(9.7)

and, by comparison with Fick’s second law

∂C

∂t
= ∇ · [D∇C] ,

we can associate the mobility MC with the intrinsic diffusivity D by MC ≡ DC(1 − C)Vm/RT and write
Eq. (9.4) as

∂C

∂t
= ∇ · (D∇C)

+∇ ·

(
DC(1− C)Vm

RT

{[
LB
(
T − TBM

)
TBM

−
LA
(
T − TAM

)
TAM

]
∇p(φ) +

WB −WA

2
∇g(φ)

})
. (9.8)

The first term is clearly a DiffusionTerm. The second is less obvious, but by factoring out C, we can see
that this is a ConvectionTerm with a velocity

~uφ =
D(1− C)Vm

RT

{[
LB
(
T − TBM

)
TBM

−
LA
(
T − TAM

)
TAM

]
∇p(φ) +

WB −WA

2
∇g(φ)

}
due to phase transformation, such that

∂C

∂t
= ∇ · (D∇C) +∇ · (C~uφ)

or

>>> Dl = Variable(value=1e-5) # cm**2 / s
>>> Ds = Variable(value=1e-9) # cm**2 / s
>>> D = (Dl - Ds) * phase.getArithmeticFaceValue() + Dl
>>> diffusion = ImplicitDiffusionTerm(coeff=D)

>>> phaseTransformationVelocity = \
... ((enthalpyB - enthalpyA) * p(phase).getFaceGrad()
... + 0.5 * (WB - WA) * g(phase).getFaceGrad()) \
... * D * (1. - C).getHarmonicFaceValue() * Vm / (R * T)
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>>> from fipy.terms.powerLawConvectionTerm import PowerLawConvectionTerm
>>> diffusionEq = TransientTerm() == diffusion \
... + PowerLawConvectionTerm(coeff=phaseTransformationVelocity,
... diffusionTerm=diffusion)

We initialize the phase field to a step function in the middle of the domain

>>> phase.setValue(1.)
>>> phase.setValue(0., where=mesh.getCellCenters()[...,0] > L/2.)

and start with a uniform composition field C = 1/2

>>> C.setValue(0.5)

In equilibrium, µA(0, CL, T ) = µA(1, CS , T ) and µB(0, CL, T ) = µB(1, CS , T ) and, for ideal solutions, we
can deduce the liquidus and solidus compositions as

CL =
1− exp

(
−LA(T−TA

M)
TA

M

Vm

RT

)
exp

(
−LB(T−TB

M)
TB

M

Vm

RT

)
− exp

(
−LA(T−TA

M)
TA

M

Vm

RT

)
CS = exp

(
−
LB
(
T − TBM

)
TBM

Vm
RT

)
CL

>>> from fipy.tools.numerix import exp
>>> Cl = (1. - exp(-enthalpyA * Vm / (R * T))) \
... / (exp(-enthalpyB * Vm / (R * T)) - exp(-enthalpyA * Vm / (R * T)))
>>> Cs = exp(-enthalpyB * Vm / (R * T)) * Cl

The phase fraction is predicted by the lever rule

>>> Cavg = C.getCellVolumeAverage()
>>> fraction = (Cl - Cavg) / (Cl - Cs)

For the special case of fraction = Cavg = 0.5, a little bit of algebra reveals that the temperature that
leaves the phase fraction unchanged is given by

>>> T.setValue((LA + LB) * TmA * TmB / (LA * TmB + LB * TmA))

In this simple, binary, ideal solution case, we can derive explicit expressions for the solidus and liquidus
compositions. In general, this may not be possible or practical. In that event, the root-finding facilities in
SciPy can be used. We’ll need a function to return the two conditions for equilibrium

0 = µA(1, CS , T )− µA(0, CL, T ) =
LA
(
T − TAM

)
TAM

Vm +RT ln(1− CS)−RT ln(1− CL)

0 = µB(1, CS , T )− µB(0, CL, T ) =
LB
(
T − TBM

)
TBM

Vm +RT lnCS −RT lnCL
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>>> from fipy.tools.numerix import log
>>> from fipy.tools.numerix import array
>>> def equilibrium(C):
... return [array(enthalpyA * Vm + R * T * log(1 - C[0]) - R * T * log(1 - C[1])),
... array(enthalpyB * Vm + R * T * log(C[0]) - R * T * log(C[1]))]

and we’ll have much better luck if we also supply the Jacobian[
∂(µS

A−µ
L
A)

∂CS

∂(µS
A−µ

L
A)

∂CL

∂(µS
B−µ

L
B)

∂CS

∂(µS
B−µ

L
B)

∂CL

]
= RT

[
− 1

1−CS

1
1−CL

1
CS

− 1
CL

]

>>> def equilibriumJacobian(C):
... return R * T * array([[-1. / (1 - C[0]), 1. / (1 - C[1])],
... [ 1. / C[0], -1. / C[1]]])

>>> try:
... from scipy.optimize import fsolve
... CsRoot, ClRoot = fsolve(func=equilibrium, x0=[0.5, 0.5],
... fprime=equilibriumJacobian)
... except ImportError:
... ClRoot = CsRoot = 0
... print "The SciPy library is not available to calculate the solidus and \
... liquidus concentrations"

>>> print Cl.allclose(ClRoot)
1
>>> print Cs.allclose(CsRoot)
1

We plot the result against the sharp interface solution

>>> sharp = CellVariable(name="sharp", mesh=mesh)
>>> x = mesh.getCellCenters()[...,0]
>>> sharp.setValue(Cs, where=x < L * fraction)
>>> sharp.setValue(Cl, where=x >= L * fraction)

>>> if __name__ == ’__main__’:
... from fipy import viewers
... viewer = viewers.make(vars=(phase, C, sharp),
... limits={’datamin’: 0., ’datamax’: 1.})
... viewer.plot()

Because the phase field interface will not move, and because we’ve seen in earlier examples that the diffusion
problem is unconditionally stable, we need take only one very large timestep to reach equilibrium

>>> dt = 1.e2
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Because the phase field equation is coupled to the composition through enthalpy and W and the diffusion
equation is coupled to the phase field through phaseTransformationVelocity, it is necessary sweep this
non-linear problem to convergence. We use the “residual” of the equations (a measure of how well they
think they have solved the given set of linear equations) as a test for how long to sweep. Because of the
ConvectionTerm, the solution matrix for diffusionEq is asymmetric and cannot be solved by the default
LinearPCGSolver. Therefore, we use a LinearLUSolver for this equation.
We now use the “sweep()” method instead of “solve()” because we require the residual.

>>> from fipy.solvers.linearLUSolver import LinearLUSolver
>>> solver = LinearLUSolver(tolerance=1e-10)

>>> phase.updateOld()
>>> C.updateOld()
>>> phaseRes = 1e+10
>>> diffRes = 1e+10
>>> while phaseRes > 1e-3 or diffRes > 1e-3:
... phaseRes = phaseEq.sweep(var=phase, dt=dt)
... diffRes = diffusionEq.sweep(var=C, dt=dt, solver=solver)
>>> if __name__ == ’__main__’:
... viewer.plot()
... raw_input("stationary phase field")
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We verify that the bulk phases have shifted to the predicted solidus and liquidus compositions

>>> print Cs.allclose(C[0], atol=2e-4)
1
>>> print Cl.allclose(C[nx-1], atol=2e-4)
1

and that the phase fraction remains unchanged
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>>> print fraction.allclose(phase.getCellVolumeAverage(), atol=2e-4)
1

while conserving mass overall

>>> print Cavg.allclose(0.5, atol=1e-8)
1

We now quench by ten degrees

>>> T.setValue(T() - 10.) # K

>>> sharp.setValue(Cs, where=x < L * fraction)
>>> sharp.setValue(Cl, where=x >= L * fraction)

Because this lower temperature will induce the phase interface to move (solidify), we will need to take much
smaller timesteps (the time scales of diffusion and of phase transformation compete with each other).

>>> dt = 1.e-6

>>> for i in range(100):
... phase.updateOld()
... C.updateOld()
... phaseRes = 1e+10
... diffRes = 1e+10
... while phaseRes > 1e-3 or diffRes > 1e-3:
... phaseRes = phaseEq.sweep(var=phase, dt=dt)
... diffRes = diffusionEq.sweep(var=C, dt=dt, solver=solver)
... if __name__ == ’__main__’:
... viewer.plot()

>>> if __name__ == ’__main__’:
... raw_input("moving phase field")
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We see that the composition on either side of the interface approach the sharp-interface solidus and liquidus,
but it will take a great many more timesteps to reach equilibrium. If we waited sufficiently long, we could
again verify the final concentrations and phase fraction against the expected values.

9.3 Module examples.phase.quaternary

The same procedure used to construct the two-component phase field diffusion problem in
examples.phase.binary can be used to build up a system of multiple components. Once again, we’ll
focus on 1D.

>>> nx = 400
>>> dx = 0.01
>>> L = nx * dx
>>> from fipy.meshes.grid1D import Grid1D
>>> mesh = Grid1D(dx = dx, nx = nx)

We consider a free energy density f(φ,C0, . . . , CN , T ) that is a function of phase φ

>>> from fipy.variables.cellVariable import CellVariable
>>> phase = CellVariable(mesh=mesh, name=’phase’, value=1, hasOld=1)

interstitial components C0 . . . CM

>>> interstitials = [
... CellVariable(mesh=mesh, name=’C0’, hasOld=1)
... ]

substitutional components CM+1 . . . CN−1

>>> substitutionals = [
... CellVariable(mesh=mesh, name=’C1’, hasOld=1),
... CellVariable(mesh=mesh, name=’C2’, hasOld=1),
... ]



Module examples.phase.quaternary 105

a “solvent” CN that is constrained by the concentrations of the other substitutional species, such that
CN = 1−

∑N−1
j=M Cj ,

>>> solvent = 1
>>> for Cj in substitutionals:
... solvent -= Cj
>>> solvent.name = ’CN’

and temperature T

>>> T = 1000

The free energy density of such a system can be written as

f(φ,C0, . . . , CN , T ) =
N∑
j=0

Cj

[
µ◦j (φ, T ) +RT ln

Cj
ρ

]
where

>>> R = 8.314 # J / (mol K)

is the gas constant. As in the binary case,

µ◦j (φ, T ) = p(φ)µ◦Sj (T ) + (1− p(φ))µ◦Lj (T ) +
Wj

2
g(φ)

is constructed with the free energies of the pure components in each phase, given the “tilting” function

>>> def p(phi):
... return phi**3 * (6 * phi**2 - 15 * phi + 10)

and the “double well” function

>>> def g(phi):
... return (phi * (1 - phi))**2

We consider a very simplified model that has partial molar volumes V̄0 = · · · = V̄M = 0 for the “interstitials”
and V̄M+1 = · · · = V̄N = 1 for the “substitutionals”. This approximation has been used in a number of
models where density effects are ignored, including the treatment of electrons in electrodeposition processes
[28, 29]. Under these constraints

∂f

∂φ
=

N∑
j=0

Cj
∂fj
∂φ

=
N∑
j=0

Cj

[
µ◦SLj (T )p′(φ) +

Wj

2
g′(φ)

]
∂f

∂Cj
=
[
µ◦j (φ, T ) +RT ln

Cj
ρ

]
= µj(φ,Cj , T ) for j = 0 . . .M

and

∂f

∂Cj
=
[
µ◦j (φ, T ) +RT ln

Cj
ρ

]
−
[
µ◦N (φ, T ) +RT ln

CN
ρ

]
= [µj(φ,Cj , T )− µN (φ,CN , T )] for j = M + 1 . . . N − 1
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where µ◦SLj (T ) ≡ µ◦Sj (T )− µ◦Lj (T ) and where µj is the classical chemical potential of component j for the
binary species and ρ = 1 +

∑M
j=0 Cj is the total molar density.

>>> rho = 1.
>>> for Cj in interstitials:
... rho += Cj

p′(φ) and g′(φ) are the partial derivatives of of p and g with respect to φ

>>> def pPrime(phi):
... return 30. * g(phi)

>>> def gPrime(phi):
... return 2. * phi * (1 - phi) * (1 - 2 * phi)

We “cook” the standard potentials to give the desired solid and liquid concentrations, with a solid phase
rich in interstitials and the solvent and a liquid phase rich in the two substitutional species.

>>> interstitials[0].S = 0.3
>>> interstitials[0].L = 0.4
>>> substitutionals[0].S = 0.4
>>> substitutionals[0].L = 0.3
>>> substitutionals[1].S = 0.2
>>> substitutionals[1].L = 0.1
>>> solvent.S = 1.
>>> solvent.L = 1.
>>> for Cj in substitutionals:
... solvent.S -= Cj.S
... solvent.L -= Cj.L

>>> rhoS = rhoL = 1.
>>> for Cj in interstitials:
... rhoS += Cj.S
... rhoL += Cj.L

>>> from fipy.tools.numerix import log
>>> for Cj in interstitials + substitutionals + [solvent]:
... Cj.standardPotential = R * T * (log(Cj.L/rhoL) - log(Cj.S/rhoS))

>>> for Cj in interstitials:
... Cj.diffusivity = 1.
... Cj.barrier = 0.

>>> for Cj in substitutionals:
... Cj.diffusivity = 1.
... Cj.barrier = R * T

>>> solvent.barrier = R * T
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We create the phase equation

1
Mφ

∂φ

∂t
= κφ∇2φ−

N∑
j=0

Cj

[
µ◦SLj (T )p′(φ) +

Wj

2
g′(φ)

]
with a semi-implicit source just as in examples.phase.simple.input and examples.phase.binary

>>> enthalpy = 0.
>>> barrier = 0.
>>> for Cj in interstitials + substitutionals + [solvent]:
... enthalpy += Cj * Cj.standardPotential
... barrier += Cj * Cj.barrier

>>> mPhi = -((1 - 2 * phase) * barrier + 30 * phase * (1 - phase) * enthalpy)
>>> dmPhidPhi = 2 * barrier - 30 * (1 - 2 * phase) * enthalpy
>>> S1 = dmPhidPhi * phase * (1 - phase) + mPhi * (1 - 2 * phase)
>>> S0 = mPhi * phase * (1 - phase) - S1 * phase * (S1 < 0)

>>> from fipy.terms.transientTerm import TransientTerm
>>> from fipy.terms.implicitDiffusionTerm import ImplicitDiffusionTerm
>>> from fipy.terms.implicitSourceTerm import ImplicitSourceTerm

>>> phase.mobility = 1.
>>> phase.gradientEnergy = 25
>>> phase.equation = TransientTerm(coeff=1/phase.mobility) \
... == ImplicitDiffusionTerm(coeff=phase.gradientEnergy) \
... + S0 + ImplicitSourceTerm(coeff = S1 * (S1 < 0))

We could construct the diffusion equations one-by-one, in the manner of examples.phase.binary, but it
is better to take advantage of the full scripting power of the Python language, where we can easily loop
over components or even make “factory” functions if we desire. For the interstitial diffusion equations, we
arrange in canonical form as before:

∂Cj
∂t︸︷︷︸

transient

= Dj∇2Cj

︸ ︷︷ ︸
diffusion

+Dj∇ ·
Cj

1 +
∑M
k=0
k 6=j

Ck


phase transformation︷ ︸︸ ︷

ρ

RT

[
µ◦SLj ∇p(φ) +

Wj

2
∇g(φ)

]
−

counter diffusion︷ ︸︸ ︷
M∑
i=0
i 6=j

∇Ci

︸ ︷︷ ︸
convection

>>> from fipy.terms.powerLawConvectionTerm import PowerLawConvectionTerm
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>>> for Cj in interstitials:
... phaseTransformation = (rho.getHarmonicFaceValue() / (R * T)) \
... * (Cj.standardPotential * p(phase).getFaceGrad()
... + 0.5 * Cj.barrier * g(phase).getFaceGrad())
...
... CkSum = CellVariable(mesh=mesh, value=0.)
... for Ck in [Ck for Ck in interstitials if Ck is not Cj]:
... CkSum += Ck
...
... counterDiffusion = CkSum.getFaceGrad()
...
... convectionCoeff = counterDiffusion + phaseTransformation
... convectionCoeff *= (Cj.diffusivity
... / (1. + CkSum.getHarmonicFaceValue()))
...
... diffusionTerm = ImplicitDiffusionTerm(coeff=Cj.diffusivity)
... convectionTerm = PowerLawConvectionTerm(coeff=convectionCoeff,
... diffusionTerm=diffusionTerm)
...
... Cj.equation = TransientTerm() == diffusionTerm + convectionTerm

The canonical form of the substitutional diffusion equations is

∂Cj
∂t︸︷︷︸

transient

= Dj∇2Cj︸ ︷︷ ︸
diffusion

+Dj∇ ·
Cj

1−
∑n−1
k=2
k 6=j

Ck


phase transformation︷ ︸︸ ︷

CN
RT

[(
µ◦SLj − µ◦SLN

)
∇p(φ) +

Wj −WN

2
∇g(φ)

]
+

counter diffusion︷ ︸︸ ︷
N∑

i=M+1
i6=j

∇Ci

︸ ︷︷ ︸
convection

>>> for Cj in substitutionals:
... phaseTransformation = (solvent.getHarmonicFaceValue() / (R * T)) \
... * ((Cj.standardPotential - solvent.standardPotential) * p(phase).getFaceGrad()
... + 0.5 * (Cj.barrier - solvent.barrier) * g(phase).getFaceGrad())
...
... CkSum = CellVariable(mesh=mesh, value=0.)
... for Ck in [Ck for Ck in substitutionals if Ck is not Cj]:
... CkSum += Ck
...
... counterDiffusion = CkSum.getFaceGrad()
...
... convectionCoeff = counterDiffusion + phaseTransformation
... convectionCoeff *= (Cj.diffusivity
... / (1. - CkSum.getHarmonicFaceValue()))
...
... diffusionTerm = ImplicitDiffusionTerm(coeff=Cj.diffusivity)
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... convectionTerm = PowerLawConvectionTerm(coeff=convectionCoeff,

... diffusionTerm=diffusionTerm)

...

... Cj.equation = TransientTerm() == diffusionTerm + convectionTerm

We start with a sharp phase boundary

ξ =

1 for x ≤ L/2,

0 for x > L/2,

>>> x = mesh.getCellCenters()[...,0]
>>> phase.setValue(1.)
>>> phase.setValue(0., where=x > L / 2)

and with uniform concentration fields, initially equal to the average of the solidus and liquidus concentrations

>>> for Cj in interstitials + substitutionals:
... Cj.setValue((Cj.S + Cj.L) / 2.)

If we’re running interactively, we create a viewer

>>> if __name__ == ’__main__’:
... from fipy import viewers
... viewer = viewers.make(vars = [phase] \
... + interstitials + substitutionals \
... + [solvent],
... limits = {’datamin’: 0, ’datamax’: 1})
... viewer.plot()

and again iterate to equilibrium

>>> from fipy.solvers.linearLUSolver import LinearLUSolver
>>> solver = LinearLUSolver(tolerance=1e-3)

>>> dt = 10000
>>> for i in range(5):
... for field in [phase] + substitutionals + interstitials:
... field.updateOld()
... phase.equation.solve(var = phase, dt = dt)
... for field in substitutionals + interstitials:
... field.equation.solve(var = field,
... dt = dt,
... solver = solver)
... if __name__ == ’__main__’:
... viewer.plot()
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We can confirm that the far-field phases have remained separated

>>> from fipy.tools.numerix import take, allclose
>>> ends = take(phase, (0,-1))
>>> allclose(ends, (1.0, 0.0), rtol = 1e-5, atol = 1e-5)
1

and that the concentration fields have appropriately segregated into their equilibrium values in each phase

>>> equilibrium = True
>>> for Cj in interstitials + substitutionals:
... ends = take(Cj, (0,-1))
... equilibrium &= allclose(ends, (Cj.S, Cj.L), rtol = 3e-3, atol = 3e-3)
>>> print equilibrium
1

9.4 Module examples.phase.anisotropy.input

In this example we solve a coupled phase and temperature equation to model solidification, and eventually
dendritic growth, based on the work of Warren, Kobayashi, Lobkovsky and Carter [24]
We start from a circular seed in a 2D mesh:

>>> numberOfCells = 40
>>> Length = numberOfCells * 2.5 / 100.
>>> nx = numberOfCells
>>> ny = numberOfCells
>>> dx = Length / nx
>>> dy = Length / ny
>>> radius = Length / 4.
>>> seedCenter = (Length / 2., Length / 2.)
>>> initialTemperature = -0.4
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>>> from fipy.meshes.grid2D import Grid2D
>>> mesh = Grid2D(dx=dx, dy=dy, nx=nx, ny=ny)

Dendritic growth will not be observed with this small test system. If you wish to see dendritic growth reset
the following parameters such that numberOfCells = 500, steps = 10000, radius = dx * 5. seedCenter
= (0. , 0.) and initialTemperature = -0.5.
The governing equation for the phase field is given by:

τφ
∂φ

∂t
= ∇ · [D∇φ+A∇ξ] + φ(1− φ)m(φ, T )

where
m(φ, T ) = φ− 1

2
− κ1

π
arctan (κ2T ) .

The coefficients D and A are given by,

D = α2 [1 + cβ]2

and

A = α2c [1 + cβ]βψ

where β = 1−Φ2

1+Φ2 , Φ = tan
(
N
2 ψ
)
, ψ = θ + arctan φy

φx
and ξx = −φy and ξy = φx.

The governing equation for temperature is given by:

∂T

∂t
= DT∇2T +

∂φ

∂t

Here the phase and temperature equations are solved with an explicit and implicit technique, respectively.
The parameters for these equations are

>>> timeStepDuration = 5e-5
>>> tau = 3e-4
>>> alpha = 0.015
>>> c = 0.02
>>> N = 4.
>>> kappa1 = 0.9
>>> kappa2 = 20.
>>> tempDiffusionCoeff = 2.25
>>> theta = 0.

The phase variable is 0 for a liquid and 1 for a solid. Here, the phase variable is initialized as a liquid,

>>> from fipy.variables.cellVariable import CellVariable
>>> phase = CellVariable(name=’phase field’, mesh=mesh, hasOld=1)

The hasOld flag keeps the old value of the variable. This is necessary for a transient solution. In this example
we wish to set up an interior region that is solid. A value of 1 is assigned to the phase variable on a patch
defined by the method:
The domain is seeded with a circular solidified region with parameters seedCenter and radius representing
the center and radius of the seed.

>>> x, y = mesh.getCellCenters()[...,0], mesh.getCellCenters()[...,1]
>>> phase.setValue(1., where=((x - seedCenter[0])**2
... + (y - seedCenter[1])**2) < radius**2)
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The temperature field is initialized to a value of -0.4 throughout:

>>> temperature = CellVariable(
... name=’temperature’,
... mesh=mesh,
... value=initialTemperature,
... hasOld=1
... )

The m(φ, T ) variable is created from the phase and temperature variables.

>>> from fipy.tools.numerix import pi, arctan, arctan2, tan
>>> mVar = phase - 0.5 - kappa1 / pi * arctan(kappa2 * temperature)

The following section of code builds up the A and D coefficients.

>>> phaseY = phase.getFaceGrad().dot((0, 1))
>>> phaseX = phase.getFaceGrad().dot((1, 0))
>>> psi = theta + arctan2(phaseY, phaseX)
>>> Phi = tan(N * psi / 2)
>>> PhiSq = Phi**2
>>> beta = (1. - PhiSq) / (1. + PhiSq)
>>> betaPsi = -N * 2 * Phi / (1 + PhiSq)
>>> A = alpha**2 * c * (1.+ c * beta) * betaPsi
>>> D = alpha**2 * (1.+ c * beta)**2

The ∇ξ variable (dxi), given by (ξx, ξy) = (−φy, φx), is constructed by first obtaining ∇φ using
getFaceGrad(). The axes are then swapped using take((1,0)) and finally the vector is multiplied by
(-1, 1) to negate the x component.

>>> dxi = phase.getFaceGrad()._take((1, 0), axis = 1) * (-1, 1)
>>> anisotropySource = (A * dxi).getDivergence()

The phase equation can now be constructed.

>>> from fipy.terms.transientTerm import TransientTerm
>>> from fipy.terms.explicitDiffusionTerm import ExplicitDiffusionTerm
>>> from fipy.terms.implicitSourceTerm import ImplicitSourceTerm
>>> phaseEq = TransientTerm(tau) == ExplicitDiffusionTerm(D) + \
... ImplicitSourceTerm(mVar * ((mVar < 0) - phase)) + \
... ((mVar > 0.) * mVar * phase + anisotropySource)

The temperature equation is built in the following way,

>>> from fipy.terms.implicitDiffusionTerm import ImplicitDiffusionTerm
>>> temperatureEq = TransientTerm() == \
... ImplicitDiffusionTerm(tempDiffusionCoeff) + \
... (phase - phase.getOld()) / timeStepDuration

If we are running this example interactively, we create viewers for the phase and temperature fields

>>> if __name__ == ’__main__’:
... from fipy.viewers import make
... phaseViewer = make(vars=phase)
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... temperatureViewer = make(vars=temperature,

... limits={’datamin’: -0.5, ’datamax’: 0.5})

... phaseViewer.plot()

... temperatureViewer.plot()

we iterate the solution in time, plotting as we go if running interactively,

>>> steps = 10
>>> for i in range(steps):
... phase.updateOld()
... temperature.updateOld()
... phaseEq.solve(phase, dt=timeStepDuration)
... temperatureEq.solve(temperature, dt=timeStepDuration)
... if i%10 == 0 and __name__ == ’__main__’:
... phaseViewer.plot()
... temperatureViewer.plot()

The solution is compared with test data. The test data was created for steps = 10 with a FORTRAN code
written by Ryo Kobayashi for phase field modeling. The following code opens the file test.gz extracts the
data and compares it with the phase variable.

>>> import examples.phase.anisotropy
>>> import os
>>> filepath = os.path.join(examples.phase.anisotropy.__path__[0], ’test.gz’)
>>> from fipy.tools import numerix
>>> testData = numerix.loadtxt(filepath)
>>> print numerix.allclose(phase, numerix.array(testData))
1

9.5 Module examples.phase.impingement.mesh40x1.input

In this example we solve a coupled phase and orientation equation on a one dimensional grid. This is
another aspect of the model of Warren, Kobayashi, Lobkovsky and Carter [24]

>>> nx = 40
>>> Lx = 2.5 * nx / 100.
>>> dx = Lx / nx
>>> from fipy.meshes.grid1D import Grid1D
>>> mesh = Grid1D(dx=dx, nx=nx)

This problem simulates the wet boundary that forms between grains of different orientations. The phase
equation is given by

τφ
∂φ

∂t
= α2∇2φ+ φ(1− φ)m1(φ, T )− 2sφ|∇θ| − ε2φ|∇θ|2

where
m1(φ, T ) = φ− 1

2
− Tφ(1− φ)

and the orientation equation is given by

P (ε|∇θ|)τθφ2 ∂θ

∂t
= ∇ ·

[
φ2

(
s

|∇θ|
+ ε2

)
∇θ
]
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where
P (w) = 1− exp (−βw) +

µ

ε
exp (−βw)

The initial conditions for this problem are set such that φ = 1 for 0 ≤ x ≤ Lx and

θ =

1 for 0 ≤ x < Lx/2,

0 for Lx/2 ≤ x ≤ Lx.

Here the phase and orientation equations are solved with an explicit and implicit technique respectively.
The parameters for these equations are

>>> timeStepDuration = 0.02
>>> phaseTransientCoeff = 0.1
>>> thetaSmallValue = 1e-6
>>> beta = 1e5
>>> mu = 1e3
>>> thetaTransientCoeff = 0.01
>>> gamma= 1e3
>>> epsilon = 0.008
>>> s = 0.01
>>> alpha = 0.015

The system is held isothermal at

>>> temperature = 1.

and is initially solid everywhere

>>> from fipy.variables.cellVariable import CellVariable
>>> phase = CellVariable(
... name=’phase field’,
... mesh=mesh,
... value=1.
... )

Because theta is an S1-valued variable (i.e. it maps to the circle) and thus intrinsically has 2π-peridocity, we
must use ModularVariable instead of a CellVariable. A ModularVariable confines theta to −π < θ ≤ π
by adding or subtracting 2π where necessary and by defining a new subtraction operator between two angles.

>>> from fipy.variables.modularVariable import ModularVariable
>>> theta = ModularVariable(
... name=’theta’,
... mesh=mesh,
... value=1.,
... hasOld=1
... )

The left and right halves of the domain are given different orientations.

>>> theta.setValue(0., where=mesh.getCellCenters()[...,0] > Lx / 2.)

The phase equation is built in the following way.
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>>> from fipy.terms.transientTerm import TransientTerm
>>> from fipy.terms.explicitDiffusionTerm import ExplicitDiffusionTerm
>>> from fipy.terms.implicitSourceTerm import ImplicitSourceTerm

>>> mPhiVar = phase - 0.5 + temperature * phase * (1 - phase)

The source term is linearized in the manner demonstrated in examples.phase.simple.input (Kobayashi,
semi-implicit).

>>> thetaMag = theta.getOld().getGrad().getMag()
>>> implicitSource = mPhiVar * (phase - (mPhiVar < 0))
>>> implicitSource += (2 * s + epsilon**2 * thetaMag) * thetaMag

The phase equation is constructed.

>>> phaseEq = TransientTerm(phaseTransientCoeff) \
... == ExplicitDiffusionTerm(alpha**2) \
... - ImplicitSourceTerm(implicitSource) \
... + (mPhiVar > 0) * mPhiVar * phase

The theta equation is built in the following way. The details for this equation are fairly involved, see J.A.
Warren et al.. The main detail is that a source must be added to correct for the discretization of theta on
the circle.

>>> phaseMod = phase + ( phase < thetaSmallValue ) * thetaSmallValue
>>> phaseModSq = phaseMod * phaseMod
>>> expo = epsilon * beta * theta.getGrad().getMag()
>>> expo = (expo < 100.) * (expo - 100.) + 100.
>>> from fipy.tools.numerix import exp
>>> pFunc = 1. + exp(-expo) * (mu / epsilon - 1.)

>>> phaseFace = phase.getArithmeticFaceValue()
>>> phaseSq = phaseFace * phaseFace
>>> gradMag = theta.getFaceGrad().getMag()
>>> eps = 1. / gamma / 10.
>>> gradMag += (gradMag < eps) * eps
>>> IGamma = (gradMag > 1. / gamma) * (1 / gradMag - gamma) + gamma
>>> diffusionCoeff = phaseSq * (s * IGamma + epsilon**2)

The source term requires the evaluation of the face gradient without the modular operator. A method of
ModularVariable, getFaceGradNoMod(), evelautes the gradient without modular arithmetic.

>>> thetaGradDiff = theta.getFaceGrad() - theta.getFaceGradNoMod()
>>> sourceCoeff = (diffusionCoeff * thetaGradDiff).getDivergence()

Finally the theta equation can be constructed.

>>> from fipy.terms.implicitDiffusionTerm import ImplicitDiffusionTerm
>>> thetaEq = TransientTerm(thetaTransientCoeff * phaseModSq * pFunc) == \
... ImplicitDiffusionTerm(diffusionCoeff) \
... + sourceCoeff
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If the example is run interactively, we create viewers for the phase and orientation variables.

>>> if __name__ == ’__main__’:
... from fipy.viewers import make
... phaseViewer = make(vars=phase,
... limits={’datamin’: 0., ’datamax’: 1.})
... from fipy.tools.numerix import pi
... thetaProductViewer = make(vars=theta,
... limits={’datamin’: -pi,
... ’datamax’: pi})
... phaseViewer.plot()
... thetaProductViewer.plot()

we iterate the solution in time, plotting as we go if running interactively,

>>> steps = 10
>>> for i in range(steps):
... theta.updateOld()
... phase.updateOld()
... thetaEq.solve(theta, dt = timeStepDuration)
... phaseEq.solve(phase, dt = timeStepDuration)
... if __name__ == ’__main__’:
... phaseViewer.plot()
... thetaProductViewer.plot()

The solution is compared with test data. The test data was created with steps = 10 with a FORTRAN
code written by Ryo Kobayashi for phase field modeling. The following code opens the file test.gz extracts
the data and compares it with the theta variable.

>>> import os
>>> testFile = ’test.gz’
>>> import examples.phase.impingement.mesh40x1
>>> filepath = os.path.join(examples.phase.impingement.mesh40x1.__path__[0],
... testFile)
>>> from fipy.tools import numerix
>>> testData = numerix.loadtxt(filepath)
>>> print theta.allclose(numerix.array(testData))
1

9.6 Module examples.phase.impingement.mesh20x20.input

In the following examples, we solve the same set of equations as in:

$ examples/phase/impingement/mesh40x1/input.py

with different initial conditions and a 2D mesh:

>>> from fipy.tools.parser import parse

>>> numberOfElements = parse(’--numberOfElements’, action = ’store’,
... type = ’int’, default = 400)
>>> numberOfSteps = parse(’--numberOfSteps’, action = ’store’,
... type = ’int’, default = 10)
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>>> steps = numberOfSteps
>>> from fipy.tools.numerix import sqrt
>>> N = int(sqrt(numberOfElements))
>>> L = 2.5 * N / 100.
>>> dL = L / N
>>> from fipy.meshes.grid2D import Grid2D
>>> mesh = Grid2D(dx=dL, dy=dL, nx=N, ny=N)

The initial conditions are given by φ = 1 and

θ =



2π
3 for x2 − y2 < L/2,
−2π

3 for (x− L)2 − y2 < L/2,
−2π

3 + 0.3 for x2 − (y − L)2 < L/2,
2π
3 for (x− L)2 − (y − L)2 < L/2.

This defines four solid regions with different orientations. Solidification occurs and then boundary wetting
occurs where the orientation varies.
The parameters for this example are

>>> timeStepDuration = 0.02
>>> phaseTransientCoeff = 0.1
>>> thetaSmallValue = 1e-6
>>> beta = 1e5
>>> mu = 1e3
>>> thetaTransientCoeff = 0.01
>>> gamma= 1e3
>>> epsilon = 0.008
>>> s = 0.01
>>> alpha = 0.015

The system is held isothermal at

>>> temperature = 10.

and is initialized to liquid everywhere

>>> from fipy.variables.cellVariable import CellVariable
>>> phase = CellVariable(name=’phase field’, mesh=mesh)

The orientation is initialized to a uniform value to denote the randomly oriented liquid phase

>>> from fipy.variables.modularVariable import ModularVariable
>>> from fipy.tools.numerix import pi
>>> theta = ModularVariable(
... name=’theta’,
... mesh=mesh,
... value=-pi + 0.0001,
... hasOld=1
... )

Four different solid circular domains are created at each corner of the domain with appropriate orientations
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>>> x, y = mesh.getCellCenters()[...,0], mesh.getCellCenters()[...,1]
>>> for a, b, thetaValue in ((0., 0., 2. * pi / 3.),
... (L, 0., -2. * pi / 3.),
... (0., L, -2. * pi / 3. + 0.3),
... (L, L, 2. * pi / 3.)):
... segment = (x - a)**2 + (y - b)**2 < (L / 2.)**2
... phase.setValue(1., where=segment)
... theta.setValue(thetaValue, where=segment)

The phase equation is built in the following way. The source term is linearized in the manner demonstrated
in examples.phase.simple.input (Kobayashi, semi-implicit). Here we use a function to build the equation,
so that it can be reused later.

>>> from fipy.terms.transientTerm import TransientTerm
>>> from fipy.terms.explicitDiffusionTerm import ExplicitDiffusionTerm
>>> from fipy.terms.implicitSourceTerm import ImplicitSourceTerm

>>> def buildPhaseEquation(phase, theta):
...
... mPhiVar = phase - 0.5 + temperature * phase * (1 - phase)
... thetaMag = theta.getOld().getGrad().getMag()
... implicitSource = mPhiVar * (phase - (mPhiVar < 0))
... implicitSource += (2 * s + epsilon**2 * thetaMag) * thetaMag
...
... return TransientTerm(phaseTransientCoeff) == \
... ExplicitDiffusionTerm(alpha**2) \
... - ImplicitSourceTerm(implicitSource) \
... + (mPhiVar > 0) * mPhiVar * phase

>>> phaseEq = buildPhaseEquation(phase, theta)

The theta equation is built in the following way. The details for this equation are fairly involved, see J.A.
Warren et al.. The main detail is that a source must be added to correct for the discretization of theta on
the circle. The source term requires the evaluation of the face gradient without the modular operators.

>>> from fipy.tools.numerix import exp
>>> def buildThetaEquation(phase, theta):
...
... phaseMod = phase + ( phase < thetaSmallValue ) * thetaSmallValue
... phaseModSq = phaseMod * phaseMod
... expo = epsilon * beta * theta.getGrad().getMag()
... expo = (expo < 100.) * (expo - 100.) + 100.
... pFunc = 1. + exp(-expo) * (mu / epsilon - 1.)
...
... phaseFace = phase.getArithmeticFaceValue()
... phaseSq = phaseFace * phaseFace
... gradMag = theta.getFaceGrad().getMag()
... eps = 1. / gamma / 10.
... gradMag += (gradMag < eps) * eps
... IGamma = (gradMag > 1. / gamma) * (1 / gradMag - gamma) + gamma
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... diffusionCoeff = phaseSq * (s * IGamma + epsilon**2)

...

... thetaGradDiff = theta.getFaceGrad() - theta.getFaceGradNoMod()

... sourceCoeff = (diffusionCoeff * thetaGradDiff).getDivergence()

...

... from fipy.terms.implicitDiffusionTerm import ImplicitDiffusionTerm

... return TransientTerm(thetaTransientCoeff * phaseModSq * pFunc) == \

... ImplicitDiffusionTerm(diffusionCoeff) \

... + sourceCoeff

>>> thetaEq = buildThetaEquation(phase, theta)

If the example is run interactively, we create viewers for the phase and orientation variables. Rather than
viewing the raw orientation, which is not meaningful in the liquid phase, we weight the orientation by the
phase

>>> if __name__ == ’__main__’:
... from fipy.viewers import make
... phaseViewer = make(vars=phase,
... limits={’datamin’: 0., ’datamax’: 1.})
... thetaProd = -pi + phase * (theta + pi)
... thetaProductViewer = make(vars=thetaProd,
... limits={’datamin’: -pi,
... ’datamax’: pi})
... phaseViewer.plot()
... thetaProductViewer.plot()

The solution will be tested against data that was created with steps = 10 with a FORTRAN code written
by Ryo Kobayashi for phase field modeling. The following code opens the file test.gz extracts the data and
compares it with the theta variable.

>>> import os
>>> testFile = ’test.gz’
>>> import examples.phase.impingement.mesh20x20
>>> import gzip
>>> filepath = os.path.join(examples.phase.impingement.mesh20x20.__path__[0],
... testFile)
>>> from fipy.tools import numerix
>>> testData = numerix.loadtxt(filepath)

>>> from fipy.tools.numerix import resize
>>> testData = resize(testData, (mesh.getNumberOfCells(),))

We step the solution in time, plotting as we go if running interactively,

>>> for i in range(steps):
... theta.updateOld()
... phase.updateOld()
... thetaEq.solve(theta, dt=timeStepDuration)
... phaseEq.solve(phase, dt=timeStepDuration)
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... if __name__ == ’__main__’:

... phaseViewer.plot()

... thetaProductViewer.plot()

The solution is compared against Ryo Kobayashi’s test data

>>> print theta.allclose(testData, rtol=1e-7, atol=1e-7)
1

The following code shows how to restart a simulation from some saved data. First, reset the variables to
their original values.

>>> phase.setValue(0)
>>> theta.setValue(-pi + 0.0001)
>>> x, y = mesh.getCellCenters()[...,0], mesh.getCellCenters()[...,1]
>>> for a, b, thetaValue in ((0., 0., 2. * pi / 3.),
... (L, 0., -2. * pi / 3.),
... (0., L, -2. * pi / 3. + 0.3),
... (L, L, 2. * pi / 3.)):
... segment = (x - a)**2 + (y - b)**2 < (L / 2.)**2
... phase.setValue(1., where=segment)
... theta.setValue(thetaValue, where=segment)

Step through half the time steps.

>>> for i in range(steps / 2):
... theta.updateOld()
... phase.updateOld()
... thetaEq.solve(theta, dt=timeStepDuration)
... phaseEq.solve(phase, dt=timeStepDuration)

We confirm that the solution has not yet converged to that given by Ryo Kobayashi’s FORTRAN code:

>>> print theta.allclose(testData)
0

We save the variables to disk.

>>> from fipy.tools import dump
>>> (f, filename) = dump.write({’phase’ : phase, ’theta’ : theta}, extension = ’.gz’)

and then recall them to test the data pickling mechanism

>>> data = dump.read(filename, f)
>>> newPhase = data[’phase’]
>>> newTheta = data[’theta’]
>>> newThetaEq = buildThetaEquation(newPhase, newTheta)
>>> newPhaseEq = buildPhaseEquation(newPhase, newTheta)

and finish the iterations,

>>> for i in range(steps / 2):
... newTheta.updateOld()
... newPhase.updateOld()
... newThetaEq.solve(newTheta, dt=timeStepDuration)
... newPhaseEq.solve(newPhase, dt=timeStepDuration)
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The solution is compared against Ryo Kobayashi’s test data

>>> print newTheta.allclose(testData, rtol=1e-7)
1





Level Set Examples

The Level Set Method (LSM) is a popular interface tracking method. Further details of the LSM and
descriptions of the algorithms used in FiPy can be found in Sethian’s Level Set book [30].

10.1 Module examples.levelSet.distanceFunction.oneD.input

Here we create a level set variable in one dimension. The level set variable calculates its value over the
domain to be the distance from the zero level set. This can be represented succinctly in the following equation
with a boundary condition at the zero level set such that,

∂φ

∂x
= 1

with the boundary condition, φ = 0 at x = L/2. The solution to this problem will be demonstrated in the
following script. Firstly, setup the parameters.

>>> dx = 0.5
>>> nx = 10

Construct the mesh.

>>> from fipy.meshes.grid1D import Grid1D
>>> mesh = Grid1D(dx=dx, nx=nx)

Construct a distanceVariable object.

>>> from fipy.models.levelSet.distanceFunction.distanceVariable \
... import DistanceVariable
>>> var = DistanceVariable(name=’level set variable’,
... mesh=mesh,
... value=-1,
... hasOld=1)
>>> x = mesh.getCellCenters()[...,0]
>>> var.setValue(1, where=x > dx * nx / 2)

Once the initial positive and negative regions have been initialized the calcDistanceFunction() method
can be used to recalculate var as a distance function from the zero level set.

>>> var.calcDistanceFunction()

The problem can then be solved by executing the solve() method of the equation.

123
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>>> if __name__ == ’__main__’:
... from fipy.viewers import make
... viewer = make(vars=var,
... limits={’datamin’: -5., ’datamax’: 5.})
... viewer.plot()

The result can be tested with the following commands.

>>> from fipy.tools import numerix
>>> print numerix.allclose(var, x - dx * nx / 2)
1

10.2 Module examples.levelSet.distanceFunction.circle.input

Here we solve the level set equation in two dimensions for a circle. The 2D level set equation can be written,

|∇φ| = 1

and the boundary condition for a circle is given by, φ = 0 at (x−L/2)2 + (y−L/2)2 = (L/4)2. The solution
to this problem will be demonstrated in the following script. Firstly, setup the parameters.

>>> dx = 1.
>>> dy = 1.
>>> nx = 11
>>> ny = 11
>>> Lx = nx * dx
>>> Ly = ny * dy

Construct the mesh.

>>> from fipy.meshes.grid2D import Grid2D
>>> mesh = Grid2D(dx=dx, dy=dy, nx=nx, ny=ny)

Construct a distanceVariable object.

>>> from fipy.models.levelSet.distanceFunction.distanceVariable \
... import DistanceVariable
>>> var = DistanceVariable(name=’level set variable’,
... mesh=mesh,
... value=-1,
... hasOld=1)

>>> x, y = mesh.getCellCenters()[...,0], mesh.getCellCenters()[...,1]
>>> var.setValue(1, where=(x - Lx / 2.)**2 + (y - Ly / 2.)**2 < (Lx / 4.)**2)

>>> var.calcDistanceFunction()

>>> if __name__ == ’__main__’:
... from fipy import viewers
... viewer = viewers.make(vars = var,
... limits = {’datamin’: -5., ’datamax’: 5.})
... viewer.plot()



Module examples.levelSet.advection.mesh1D.input 125

The result can be tested with the following commands.

>>> dY = dy / 2.
>>> dX = dx / 2.
>>> mm = min (dX, dY)
>>> from fipy.tools import numerix
>>> m1 = dY * dX / numerix.sqrt(dY**2 + dX**2)
>>> def evalCell(phix, phiy, dx, dy):
... aa = dy**2 + dx**2
... bb = -2 * ( phix * dy**2 + phiy * dx**2)
... cc = dy**2 * phix**2 + dx**2 * phiy**2 - dx**2 * dy**2
... sqr = numerix.sqrt(bb**2 - 4. * aa * cc)
... return ((-bb - sqr) / 2. / aa, (-bb + sqr) / 2. / aa)
>>> v1 = evalCell(-dY, -m1, dx, dy)[0]
>>> v2 = evalCell(-m1, -dX, dx, dy)[0]
>>> v3 = evalCell(m1, m1, dx, dy)[1]
>>> v4 = evalCell(v3, dY, dx, dy)[1]
>>> v5 = evalCell(dX, v3, dx, dy)[1]
>>> MASK = -1000
>>> trialValues = numerix.MA.masked_values((
... MASK, MASK, MASK, MASK, MASK, MASK, MASK, MASK, MASK, MASK, MASK,
... MASK, MASK, MASK, MASK,-3*dY,-3*dY,-3*dY, MASK, MASK, MASK, MASK,
... MASK, MASK, MASK, v1, -dY, -dY, -dY, v1, MASK, MASK, MASK,
... MASK, MASK, v2, -m1, m1, dY, m1, -m1, v2, MASK, MASK,
... MASK, -dX*3, -dX, m1, v3, v4, v3, m1, -dX,-dX*3, MASK,
... MASK, -dX*3, -dX, dX, v5, MASK, v5, dX, -dX,-dX*3, MASK,
... MASK, -dX*3, -dX, m1, v3, v4, v3, m1, -dX,-dX*3, MASK,
... MASK, MASK, v2, -m1, m1, dY, m1, -m1, v2, MASK, MASK,
... MASK, MASK, MASK, v1, -dY, -dY, -dY, v1, MASK, MASK, MASK,
... MASK, MASK, MASK, MASK,-3*dY,-3*dY,-3*dY, MASK, MASK, MASK, MASK,
... MASK, MASK, MASK, MASK, MASK, MASK, MASK, MASK, MASK, MASK, MASK),
... MASK)
>>> print var.allclose(trialValues)
1

10.3 Module examples.levelSet.advection.mesh1D.input

This example first solves the distance function equation in one dimension:

|∇φ| = 1

with φ = 0 at x = L/5. The variable is then advected with,

∂φ

∂t
+ ~u · ∇φ = 0

The scheme used in the AdvectionTerm preserves the var as a distance function.
The solution to this problem will be demonstrated in the following script. Firstly, setup the parameters.

>>> velocity = 1.
>>> dx = 1.
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>>> nx = 10
>>> timeStepDuration = 1.
>>> steps = 2
>>> L = nx * dx
>>> interfacePosition = L / 5.

Construct the mesh.

>>> from fipy.meshes.grid1D import Grid1D
>>> mesh = Grid1D(dx=dx, nx=nx)

Construct a distanceVariable object.

>>> from fipy.models.levelSet.distanceFunction.distanceVariable \
... import DistanceVariable
>>> var = DistanceVariable(name=’level set variable’,
... mesh=mesh,
... value=-1,
... hasOld=1)
>>> var.setValue(1, where=mesh.getCellCenters()[...,0] > interfacePosition)
>>> var.calcDistanceFunction()

The advectionEquation is constructed.

>>> from fipy.models.levelSet.advection.advectionEquation import \
... buildAdvectionEquation
>>> advEqn = buildAdvectionEquation(advectionCoeff=velocity)

The problem can then be solved by executing a serious of time steps.

>>> if __name__ == ’__main__’:
... from fipy.viewers import make
... viewer = make(vars=var,
... limits={’datamin’: -10., ’datamax’: 10.})
... viewer.plot()
... for step in range(steps):
... var.updateOld()
... advEqn.solve(var, dt=timeStepDuration)
... viewer.plot()

The result can be tested with the following code:

>>> for step in range(steps):
... var.updateOld()
... advEqn.solve(var, dt=timeStepDuration)
>>> x = mesh.getCellCenters()[:,0]
>>> distanceTravelled = timeStepDuration * steps * velocity
>>> answer = x - interfacePosition - timeStepDuration * steps * velocity
>>> from fipy.tools import numerix
>>> answer = numerix.where(x < distanceTravelled,
... x[0] - interfacePosition, answer)
>>> print var.allclose(answer)
1
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10.4 Module examples.levelSet.advection.circle.input

This example first imposes a circular distance function:

φ (x, y) =

[(
x− L

2

)2

+
(
y − L

2

)2
]1/2

− L

4

The variable is advected with,
∂φ

∂t
+ ~u · ∇φ = 0

The scheme used in the AdvectionTerm preserves the var as a distance function. The solution to this
problem will be demonstrated in the following script. Firstly, setup the parameters.

>>> L = 1.
>>> N = 25
>>> velocity = 1.
>>> cfl = 0.1
>>> velocity = 1.
>>> distanceToTravel = L / 10.
>>> radius = L / 4.
>>> dL = L / N
>>> timeStepDuration = cfl * dL / velocity
>>> steps = int(distanceToTravel / dL / cfl)

Construct the mesh.

>>> from fipy.meshes.grid2D import Grid2D
>>> mesh = Grid2D(dx=dL, dy=dL, nx=N, ny=N)

Construct a distanceVariable object.

>>> from fipy.models.levelSet.distanceFunction.distanceVariable \
... import DistanceVariable
>>> var = DistanceVariable(
... name = ’level set variable’,
... mesh = mesh,
... value = 1.,
... hasOld = 1)

Initialise the distanceVariable to be a circular distance function.

>>> from fipy.tools import numerix
>>> initialArray = numerix.sqrt((mesh.getCellCenters()[:,0] - L / 2.)**2 +
... (mesh.getCellCenters()[:,1] - L / 2.)**2) - \
... radius
>>> var.setValue(initialArray)

The advectionEquation is constructed.

>>> from fipy.models.levelSet.advection.advectionEquation import \
... buildAdvectionEquation
>>> advEqn = buildAdvectionEquation(
... advectionCoeff=velocity)
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The problem can then be solved by executing a serious of time steps.

>>> if __name__ == ’__main__’:
... from fipy.viewers import make
... viewer = make(vars=var,
... limits={’datamin’: -radius, ’datamax’: radius})
... viewer.plot()
... for step in range(steps):
... var.updateOld()
... advEqn.solve(var, dt=timeStepDuration)
... viewer.plot()

The result can be tested with the following commands.

>>> for step in range(steps):
... var.updateOld()
... advEqn.solve(var, dt=timeStepDuration)
>>> x = numerix.array(mesh.getCellCenters())
>>> distanceTravelled = timeStepDuration * steps * velocity
>>> answer = initialArray - distanceTravelled
>>> answer = numerix.where(answer < 0., -1001., answer)
>>> solution = numerix.where(answer < 0., -1001., numerix.array(var))
>>> numerix.allclose(answer, solution, atol=4.7e-3)
1

If the AdvectionEquation is built with the HigherOrderAdvectionTerm the result is more accurate,

>>> var.setValue(initialArray)
>>> from fipy.models.levelSet.advection.higherOrderAdvectionEquation \
... import buildHigherOrderAdvectionEquation
>>> advEqn = buildHigherOrderAdvectionEquation(
... advectionCoeff = velocity)
>>> for step in range(steps):
... var.updateOld()
... advEqn.solve(var, dt=timeStepDuration)
>>> solution = numerix.where(answer < 0., -1001., numerix.array(var))
>>> numerix.allclose(answer, solution, atol=1.02e-3)
1



The Damascene Process 129

Superconformal Electrodeposition Examples

The Damascene Process

State of the art manufacturing of semiconductor devices involves the electrodeposition of copper for on-chip
wiring of integrated circuits. In the Damascene process interconnects are fabricated by first patterning
trenches in a dielectric medium and then filling by metal electrodeposition over the entire wafer surface.
This metalization process, pioneered by IBM, depends on the use of electrolyte additives that effect the local
metal deposition rate.

Superfill

The additives in the electrolyte affect the local deposition rate in such a way that bottom-up filling occurs in
trenches or vias. This process, known as superconformal electrodeposition or superfill, is demonstrated in the
following figure. The figure shows sequential images of bottom-up superfilling of submicrometer trenches by
copper deposition from an electrolyte containing PEG-SPS-Cl. Preferential metal deposition at the bottom
of the trenches followed by bump formation above the filled trenches is evident.•As a function of TIME

•As a function of ASPECT RATIO

Fig. 1

The CEAC Mechanism

This process has been demonstrated to depend critically on the inclusion of additives in the electrolyte.
Recent publications propose Curvature Enhanced Accelerator Coverage (CEAC) as the mechanism behind
the superfilling process [5]. In this mechanism, molecules that accelerate local metal deposition displace
molecules that inhibit local metal deposition on the metal/electrolyte interface. For electrolytes that yield
superconformal filling of fine features, this buildup happens relatively slowly because the concentration of
accelerator species is much more dilute compared to the inhibitor species in the electrolyte. The mechanism
that leads to the increased rate of metal deposition along the bottom of the filling trench is the concurrent
local increase of the accelerator coverage due to decreasing local surface area, which scales with the local
curvature (hence the name of the mechanism). A good overview of this mechanism can be found in [31].

Using FiPy to model Superfill

Example 10.5 provides a simple way to use FiPy to model the superfill process. The example includes a
detailed description of the governing equations and feature geometry. It requires the user to import and
execute a function at the python prompt. The model parameters can be passed as arguments to this
function. In future all superfill examples will be provided with this type of interface. Example 10.8 has the
same functionality as 10.5 but demonstrates how to write a new script in the case where the existing suite
of scripts do not meet the required needs.
In general it is a good idea to obtain the Mayavi plotting package for which a specialized superfill viewer class
has been created, see Chapter 2 “Installation and Usage”. The other standard viewers mentioned in Chapter 2
“Installation and Usage” are still adequate although they do not give such clear images that are tailored
for the superfill problem. The images below demonstrate the Mayavi viewing capability. Each contour
represents sequential positions of the interface and the color represents the concentration of accelerator as a
surfactant. The areas of high surfactant concentration have an increased deposition rate.

http://mayavi.sourceforge.net
http://mayavi.sourceforge.net
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10.5 Module examples.levelSet.electroChem.inputSimpleTrenchSystem

This input file is a demonstration of the use of FiPy for modeling electrodeposition using the CEAC
mechanism. The material properties and experimental parameters used are roughly those that have been
previously published [32]. To run this example from the base fipy directory type:

$ examples/levelSet/electroChem/inputSimpleTrenchSystem.py

at the command line. The results of the simulation will be displayed and the word finished in the terminal
at the end of the simulation. In order to alter the number of timesteps, the python function that encapsulates
the system of equations must first be imported (at the python command line),

>>> from examples.levelSet.electroChem.inputSimpleTrenchSystem import runSimpleTrenchSystem

and then the function can be run with a different number of time steps with the numberOfSteps argument
as follows,

>>> runSimpleTrenchSystem(numberOfSteps=5, displayViewers=False)
1

Change the displayViewers argument to True if you wish to see the results displayed on the screen.
Example 10.8 gives explanation for writing new scripts or modifying existing scripts that are encapsulated
by functions. Any argument parameter can be changed. For example if the initial catalyst coverage is not
0, then it can be reset,

>>> runSimpleTrenchSystem(catalystCoverage=0.1, displayViewers=False)
0

The following image shows a schematic of a trench geometry along with the governing equations for mod-
eling electrodeposition with the CEAC mechanism. All of the given equations are implemented in the
runSimpleTrenchSystem function. As stated above, all the parameters in the equations can be changed
with function arguments.
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dθa

dt
= κ|#v|θa + cak
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∂t
= Da∇2ca

∂cc

∂t
= Dc∇2cc

∂cl

∂t
= Dl∇2cl

δ
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The distanceVariable has now been created to mark the interface. Some other variables need to be created
that govern the concentrations of various species. Create the accelerator surfactant coverage, θ, variable.
This variable influences the deposition rate.

>>> from fipy.models.levelSet.surfactant.surfactantVariable import \
... SurfactantVariable
>>> acceleratorVar = SurfactantVariable(
... name = "accelerator variable",
... value = initialAcceleratorCoverage,
... distanceVar = distanceVar)

Create the bulk accelerator concentration, cθ, in the electrolyte,

>>> from fipy.variables.cellVariable import CellVariable
>>> bulkAcceleratorVar = CellVariable(
... name = ’bulk accelerator variable’,
... mesh = mesh,
... value = bulkAcceleratorConcentration)

Create the bulk metal ion concentration, cm, in the electrolyte.

>>> from fipy.variables.cellVariable import CellVariable
>>> metalVar = CellVariable(
... name = ’metal variable’,
... mesh = mesh,
... value = bulkMetalConcentration)

The following commands build the depositionRateVariable, v. The depositionRateVariable is given
by the following equation.

v =
iΩ
nF

where Ω is the metal atomic volume, n is the metal ion charge and F is Faraday’s constant. The current
density is given by

i = i0
ci
m

c∞m
exp

(
−αF

RT
η

)

where ci
m is the metal ion concentration in the bulk at the interface, c∞m is the far-field bulk concentration of

metal ions, α is the transfer coefficient, R is the gas constant, T is the temperature and η is the overpotential.
The exchange current density is an empirical function of accelerator coverage,

i0(θ) = b0 + b1θ

The commands needed to build this equation are,

>>> expoConstant = -transferCoefficient * faradaysConstant \
... / (gasConstant * temperature)
>>> tmp = acceleratorDependenceCurrentDensity \
... * acceleratorVar.getInterfaceVar()
>>> exchangeCurrentDensity = constantCurrentDensity + tmp
>>> expo = numerix.exp(expoConstant * overpotential)
>>> currentDensity = expo * exchangeCurrentDensity * metalVar \
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... / bulkMetalConcentration
>>> depositionRateVariable = currentDensity * atomicVolume \
... / (charge * faradaysConstant)

Build the extension velocity variable vext. The extension velocity uses the extensionEquation to spread
the velocity at the interface to the rest of the domain.

>>> extensionVelocityVariable = CellVariable(
... name = ’extension velocity’,
... mesh = mesh,
... value = depositionRateVariable)

Using the variables created above the governing equations will be built. The governing equation for surfactant
conservation is given by,

θ̇ = Jvθ + kci
θ(1− θ)

where θ is the coverage of accelerator at the interface, J is the curvature of the interface, v is the normal
velocity of the interface, ci

θ is the concentration of accelerator in the bulk at the interface. The value k is
given by an empirical function of overpotential,

k = k0 + k3η
3

The above equation is represented by the AdsorbingSurfactantEquation in FiPy:

>>> from fipy.models.levelSet.surfactant.adsorbingSurfactantEquation \
... import AdsorbingSurfactantEquation
>>> surfactantEquation = AdsorbingSurfactantEquation(
... surfactantVar = acceleratorVar,
... distanceVar = distanceVar,
... bulkVar = bulkAcceleratorConcentration,
... rateConstant = rateConstant \
... + overpotentialDependence * overpotential**3)

The variable φ is advected by the advectionEquation given by,

∂φ

∂t
+ vext|∇φ| = 0

and is set up with the following commands:

>>> from fipy.models.levelSet.advection.higherOrderAdvectionEquation \
... import buildHigherOrderAdvectionEquation
>>> advectionEquation = buildHigherOrderAdvectionEquation(
... advectionCoeff = extensionVelocityVariable)

The diffusion of metal ions from the far field to the interface is governed by,

∂cm

∂t
= ∇ · D∇cm

where,

D =





Dm when φ > 0,

0 when φ ≤ 0

cm = c∞m

cθ = c∞θ

∂cm

∂t
= Dm∇2cm

∂cθ

∂t
= Dθ∇2cθ

i = i0
cc

c∞c
exp

(

−α(θa)F

RT
η

)

i0 = b0 + b1θa

dθa

dt
= κ|&v|θa + cak

+
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a
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dt
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+
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1
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0 + k+
1 η3

2

D

W

dθa

dt
= κ|#v|θa + cak

+
a (1− θa)− k−a θm

a + F+(ca, θl)− F−(θa, cl)

dθl

dt
= κ|#v|θl + G+(cl, θl)−G−(θl)

∂cl

∂t
= Dl∇2cl

δ

−Da#n ·∇ca = Γacak
+
a (1− θa) + ΓaF

+(ca, θl)

−Dl#n ·∇cl = ΓlG
+(cl, θl)

#v =
i(θa, η)Ω#n

2F

α(θa) = m0 + m1θa

k+
a = k+

0 + k+
1 η3

2

The following table shows the symbols used in the governing equations and their corresponding ar-
guments to the runSimpleTrenchSystem function. The boundary layer depth is intentionally small
in this example in order not to complicate the mesh. Further examples will simulate more real-
istic boundary layer depths but will also have more complex meshes requiring the gmsh software.



132 10. Level Set Examples

Symbol Description Keyword Argument Value Unit
Deposition Rate Parameters

v deposition rate m s−1

i current density A m−2

Ω molar volume molarVolume 7.1×10−6 m3 mol−1

n ion charge charge 2
F Faraday’s constant faradaysConstant 9.6×10−4 C mol−1

i0 exchange current density A m−2

α transfer coefficient transferCoefficient 0.5
η overpotential overpotential -0.3 V
R gas constant gasConstant 8.314 J K−1 mol−1

T temperature temperature 298.0 K
b0 current density for θ0 currentDensity0 0.26 A m−2

b1 current density for θ currentDensity1 45.0 A m−2

Metal Ion Parameters
cm metal ion concentration metalConcentration 250.0 mol m−3

c∞m far field metal ion concentration metalConcentration 250.0 mol m−3

Dm metal ion diffusion coefficient metalDiffusion 5.6×10−10 m2 s−1

Catalyst Parameters
θ catalyst surfactant concentration catalystCoverage 0.0
cθ bulk catalyst concentration catalystConcentration 5.0×10−3 mol m−3

c∞θ far field catalyst concentration catalystConcentration 5.0×10−3 mol m−3

Dθ catalyst diffusion coefficient catalystDiffusion 1.0×10−9 m2 s−1

Γ catalyst site density siteDensity 9.8×10−6 mol m−2

k rate constant m3 mol−1 s−1

k0 rate constant for η0 rateConstant0 1.76 m3 mol−1 s−1

k3 rate constant for η3 rateConstant3 -245.0×10−6 m3 mol−1 s−1 V−3

Geometry Parameters
D trench depth trenchDepth 0.5×10−6 m

D/W trench aspect ratio aspectRatio 2.0
S trench spacing trenchSpacing 0.6×10−6 m
δ boundary layer depth boundaryLayerDepth 0.3×10−6 m

Simulation Control Parameters
computational cell size cellSize 0.1×10−7 m
number of time steps numberOfSteps 5
whether to display the viewers displayViewers True

If the MayaVi plotting software is installed (see Chapter 2) then a plot should appear that is updated every
20 time steps and will eventually resemble the image below.
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runSimpleTrenchSystem(faradaysConstant=96000.0,
gasConstant=8.3140000000000001, transferCoefficient=0.5,
rateConstant0=1.76,
rateConstant3=-0.00024499999999999999,
catalystDiffusion=1.0000000000000001e-09,
siteDensity=9.7999999999999993e-06,
molarVolume=7.0999999999999998e-06, charge=2,
metalDiffusion=5.6000000000000003e-10, temperature=298.0,
overpotential=-0.29999999999999999,
metalConcentration=250.0,
catalystConcentration=0.0050000000000000001,
catalystCoverage=0.0, currentDensity0=0.26000000000000001,
currentDensity1=45.0, cellSize=1e-08,
trenchDepth=4.9999999999999998e-07, aspectRatio=2.0,
trenchSpacing=5.9999999999999997e-07,
boundaryLayerDepth=2.9999999999999999e-07,
numberOfSteps=5, displayViewers=True)
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10.6 Module examples.levelSet.electroChem.inputGold

This input file is a demonstration of the use of FiPy for modeling gold superfill. The material properties
and experimental parameters used are roughly those that have been previously published [33]. To run this
example from the base fipy directory type:

$ examples/levelSet/electroChem/inputGold.py

at the command line. The results of the simulation will be displayed and the word finished in the terminal
at the end of the simulation. The simulation will only run for 10 time steps. In order to alter the number
of timesteps, the python function that encapsulates the system of equations must first be imported (at the
python command line),

>>> from examples.levelSet.electroChem.inputGold import runGold

and then the function can be run with a different number of time steps with the numberOfSteps argument
as follows,

>>> runGold(numberOfSteps=10, displayViewers=False)
1

Change the displayViewers argument to True if you wish to see the results displayed on the screen. This
example has a more realistic default boundary layer depth and thus requires gmsh to construct a more
complex mesh.
There are a few differences between the gold superfill model presented in this example and Example 10.5.
Most default values have changed to account for a different metal ion (gold) and catalyst (lead). In this
system the catalyst is not present in the electrolyte but instead has a non-zero initial coverage. Thus
quantities associated with bulk catalyst and catalyst accumulation are not defined. The current density is
given by,

i =
cm
c∞m

(b0 + b1θ) .

The more common representation of the current density includes an exponential part. Here it is buried in
b0 and b1. The governing equation for catalyst evolution includes a term for catalyst consumption on the
interface and is given by

θ̇ = Jvθ − kcvθ

where kc is the consumption coefficient (consumptionRateConstant). The trench geometry is also given a
slight taper, given by taperAngle.
If the MayaVi plotting software is installed (see Chapter 2) then a plot should appear that is updated every
10 time steps and will eventually resemble the image below.
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runGold(faradaysConstant=96000.0, consumptionRateConstant=2600000.0,
molarVolume=1.0210000000000001e-05, charge=1.0,
metalDiffusion=1.6999999999999999e-09, metalConcentration=20.0,
catalystCoverage=0.14999999999999999,
currentDensity0=0.47999999999999998, currentDensity1=10.4,
cellSize=1e-08, trenchDepth=1.9999999999999999e-07, aspectRatio=1.47,
trenchSpacing=4.9999999999999998e-07,
boundaryLayerDepth=9.0000000000000006e-05, numberOfSteps=10,
taperAngle=6.0, displayViewers=True)

10.7 Module examples.levelSet.electroChem.inputLeveler

This input file is a demonstration of the use of FiPy for modeling copper superfill with leveler and accelerator
additives. The material properties and experimental parameters used are roughly those that have been
previously published [34]. To run this example from the base fipy directory type:

$ examples/levelSet/electroChem/inputLeveler.py

at the command line. The results of the simulation will be displayed and the word finished in the terminal
at the end of the simulation. The simulation will only run for 200 time steps. In order to alter the number
of timesteps, the python function that encapsulates the system of equations must first be imported (at the
python command line),
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>>> from examples.levelSet.electroChem.inputLeveler import runLeveler

and then the function can be executed with a different number of time steps by changing the numberOfSteps
argument as follows,

>>> runLeveler(numberOfSteps=10, displayViewers=False, cellSize=0.25e-7)
1

Change the displayViewers argument to True if you wish to see the results displayed on the screen. This
example requires gmsh to construct the mesh.
This example models the case when suppressor, accelerator and leveler additives are present in the electrolyte.
The suppressor is assumed to absorb quickly compared with the other additives. Any unoccupied surface sites
are immediately covered with suppressor. The accelerator additive has more surface affinity than suppressor
and is thus preferential adsorbed. The accelerator can also remove suppressor when the surface reaches full
coverage. Similarly, the leveler additive has more surface affinity than both the suppressor and accelerator.
This forms a simple set of assumptions for understanding the behavior of these additives.
The following is a complete description of the equations for the model described here. Any equations that
have been omitted are the same as those given in Example 10.5. The current density is governed by

i =
cm
c∞m

∑
j

[
ijθj

(
exp
−αjFη
RT

− exp
(1− αj)Fη

RT

)]

where j represents S for suppressor, A for accelerator, L for leveler and V for vacant. This model assumes a
linear interpolation between the three cases of complete coverage for each additive or vacant substrate. The
governing equations for the surfactants are given by,

θ̇L = κvθL + k+
l cL (1− θL)− k−L vθL,

θ̇a = κvθA + k+
AcA (1− θA − θL)− kLcLθA − k−Aθ

q−1
A ,

θS = 1− θA − θL

and
θV = 0.

It has been found experimentally that iL = iS .
If the surface reaches full coverage, the equations do not naturally prevent the coverage rising above full
coverage due to the curvature terms. Thus, when θL + θA = 1 then the equation for accelerator becomes
˙θA = −θ̇L and when θL = 1, the equation for leveler becomes θ̇L = −k−L vθL.

The parameters k+
A , k

−
A and q are both functions of η given by,

k+
A = k+

A0 exp
−αkFη
RT

,

and

k−A = Bd +
A

exp (Ba (η + Vd))
+ exp (Bb (η + Vd))

and
q = m ∗ η + b.

The following table shows the symbols used in the governing equa-
tions and their corresponding arguments for the runLeveler function.
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Symbol Description Keyword Argument Value Unit
Deposition Rate Parameters

v deposition rate m s−1

iA accelerator current density i0Accelerator A m−2

iL leveler current density i0Leveler A m−2

Ω molar volume molarVolume 7.1×10−6 m3 mol−1

n ion charge charge 2
F Faraday’s constant faradaysConstant 9.6×10−4 C mol−1

i0 exchange current density A m−2

αA accelerator transfer coefficient alphaAccelerator 0.4
αS leveler transfer coefficient alphaLeveler 0.5
η overpotential overpotential -0.3 V
R gas constant gasConstant 8.314 J K mol−1

T temperature temperature 298.0 K
Ion Parameters

cI ion concentration ionConcentration 250.0 mol m−3

c∞I far field ion concentration ionConcentration 250.0 mol m−3

DI ion diffusion coefficient ionDiffusion 5.6×10−10 m2 s−1

Accelerator Parameters
θA accelerator coverage acceleratorCoverage 0.0
cA accelerator concentartion acceleratorConcentration 5.0×10−3 mol m−3

c∞A far field accelerator concentration acceleratorConcentration 5.0×10−3 mol m−3

DA catalyst diffusion coefficient catalystDiffusion 1.0×10−9 m2 s−1

ΓA accelerator site density siteDensity 9.8×10−6 mol m−2

k+
A accelerator adsorption m3 mol−1 s−1

k+
A0 accelerator adsorption coeff kAccelerator0 2.6times10−4 m3 mol−1 s−1

αk accelerator adsorption coeff alphaAdsorption 0.62
k−A accelerator consumption coeff
Ba experimental parameter Bd -40.0
Bb experimental parameter Bd 60.0
Vd experimental parameter Bd 9.8×10−2

Bd experimental parameter Bd 8.0×10−4

Geometry Parameters
D trench depth trenchDepth 0.5×10−6 m

D/W trench aspect ratio aspectRatio 2.0
S trench spacing trenchSpacing 0.6×10−6 m
δ boundary layer depth boundaryLayerDepth 0.3×10−6 m

Simulation Control Parameters
computational cell size cellSize 0.1×10−7 m
number of time steps numberOfSteps 5
whether to display the viewers displayViewers True

The following images show accelerator and leveler contour plots that can be obtained by running this
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example.
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runLeveler(kLeveler=0.017999999999999999, bulkLevelerConcentration=0.02,
cellSize=1e-08, rateConstant=0.00025999999999999998,
initialAcceleratorCoverage=0.0,
levelerDiffusionCoefficient=5.0000000000000003e-10, numberOfSteps=400,
displayRate=10, displayViewers=True)

10.8 Module examples.levelSet.electroChem.inputWriteScriptHowTo

This input file demonstrates how to create a new superfill script if the existing suite of scripts do not meet
the required needs. It provides the functionality of Example 10.5. To run this example from the base fipy
directory type:

$ examples/levelSet/electroChem/input.py --numberOfElements=10000 --numberOfSteps=800

at the command line. The results of the simulation will be displayed and the word finished in the terminal
at the end of the simulation. To obtain this example in a plain script file in order to edit and run type:

$ python setup.py copy script --From examples/levelSet/electroChem/input.py --To myScript.py
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in the base FiPy directory. The file myScript.py will contain the script.
The following is an explicit explanation of the input commands required to set up and run the problem. At
the top of the file all the parameter values are set. Their use will be explained during the instantiation of
various objects and are the same as those explained in Example 10.5. The following parameters (all in S.I.
units) represent,
physical constants,

>>> faradaysConstant = 9.6e4
>>> gasConstant = 8.314
>>> transferCoefficient = 0.5

properties associated with the catalyst species,

>>> rateConstant0 = 1.76
>>> rateConstant3 = -245e-6
>>> catalystDiffusion = 1e-9
>>> siteDensity = 9.8e-6

properties of the cupric ions,

>>> molarVolume = 7.1e-6
>>> charge = 2
>>> metalDiffusionCoefficient = 5.6e-10

parameters dependent on experimental constraints,

>>> temperature = 298.
>>> overpotential = -0.3
>>> bulkMetalConcentration = 250.
>>> catalystConcentration = 5e-3
>>> catalystCoverage = 0.

parameters obtained from experiments on flat copper electrodes,

>>> currentDensity0 = 0.26
>>> currentDensity1 = 45.

general simulation control parameters,

>>> cflNumber = 0.2
>>> numberOfCellsInNarrowBand = 10
>>> cellsBelowTrench = 10
>>> cellSize = 0.1e-7

parameters required for a trench geometry,

>>> trenchDepth = 0.5e-6
>>> aspectRatio = 2.
>>> trenchSpacing = 0.6e-6
>>> boundaryLayerDepth = 0.3e-6

The hydrodynamic boundary layer depth (boundaryLayerDepth) is intentionally small in this example to
keep the mesh at a reasonable size.
Build the mesh:
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>>> from fipy.tools.parser import parse
>>> numberOfElements = parse(’--numberOfElements’, action=’store’,
... type=’int’, default=-1)
>>> numberOfSteps = parse(’--numberOfSteps’, action=’store’,
... type=’int’, default=5)

>>> from fipy.tools.numerix import sqrt, exp, max
>>> if numberOfElements != -1:
... pos = trenchSpacing * cellsBelowTrench / 4 / numberOfElements
... sqr = trenchSpacing * (trenchDepth + boundaryLayerDepth) \
... / (2 * numberOfElements)
... cellSize = pos + sqrt(pos**2 + sqr)
... else:
... cellSize = 0.1e-7

>>> yCells = cellsBelowTrench \
... + int((trenchDepth + boundaryLayerDepth) / cellSize)
>>> xCells = int(trenchSpacing / 2 / cellSize)

>>> from fipy.meshes.grid2D import Grid2D
>>> mesh = Grid2D(dx=cellSize,
... dy=cellSize,
... nx=xCells,
... ny=yCells)

A distanceVariable object, φ, is required to store the position of the interface . The distanceVariable
calculates its value so that it is a distance function (i.e. holds the distance at any point in the mesh from
the electrolyte/metal interface at φ = 0) and |∇φ| = 1.
First, create the φ variable, which is initially set to -1 everywhere. Create an initial variable,

>>> narrowBandWidth = numberOfCellsInNarrowBand * cellSize
>>> from fipy.models.levelSet.distanceFunction.distanceVariable import \
... DistanceVariable
>>> distanceVar = DistanceVariable(
... name=’distance variable’,
... mesh= mesh,
... value=-1,
... narrowBandWidth=narrowBandWidth,
... hasOld=1)

The electrolyte region will be the positive region of the domain while the metal region will be negative.

>>> bottomHeight = cellsBelowTrench * cellSize
>>> trenchHeight = bottomHeight + trenchDepth
>>> trenchWidth = trenchDepth / aspectRatio
>>> sideWidth = (trenchSpacing - trenchWidth) / 2

>>> x, y = mesh.getCellCenters()[...,0], mesh.getCellCenters()[...,1]
>>> distanceVar.setValue(1, where=(y > trenchHeight)
... | ((y > bottomHeight)
... & (x < xCells * cellSize - sideWidth)))
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>>> distanceVar.calcDistanceFunction(narrowBandWidth=1e10)

The distanceVariable has now been created to mark the interface. Some other variables need to be created
that govern the concentrations of various species. Create the catalyst surfactant coverage, θ, variable. This
variable influences the deposition rate.
..
¿¿¿ from fipy.models.levelSet.surfactant.surfactantVariable import ... SurfactantVariable ¿¿¿ catalyst-
Var = SurfactantVariable( ... name=”catalyst variable”, ... value=catalystCoverage, ... distance-
Var=distanceVar)Create the bulk catalyst concentration, cθ, in the electrolyte,

>>> from fipy.variables.cellVariable import CellVariable
>>> bulkCatalystVar = CellVariable(
... name=’bulk catalyst variable’,
... mesh=mesh,
... value=catalystConcentration)

Create the bulk metal ion concentration, cm, in the electrolyte.

>>> metalVar = CellVariable(
... name=’metal variable’,
... mesh=mesh,
... value=bulkMetalConcentration)

The following commands build the depositionRateVariable, v. The depositionRateVariable is given
by the following equation.

v =
iΩ
nF

where Ω is the metal molar volume, n is the metal ion charge and F is Faraday’s constant. The current
density is given by

i = i0
cim
c∞m

exp
(
−αF
RT

η

)
where cim is the metal ion concentration in the bulk at the interface, c∞m is the far-field bulk concentration of
metal ions, α is the transfer coefficient, R is the gas constant, T is the temperature and η is the overpotential.
The exchange current density is an empirical function of catalyst coverage,

i0(θ) = b0 + b1θ

The commands needed to build this equation are,

>>> expoConstant = -transferCoefficient * faradaysConstant \
... / (gasConstant * temperature)
>>> tmp = currentDensity1 \
... * catalystVar.getInterfaceVar()
>>> exchangeCurrentDensity = currentDensity0 + tmp
>>> expo = exp(expoConstant * overpotential)
>>> currentDensity = expo * exchangeCurrentDensity * metalVar \
... / bulkMetalConcentration
>>> depositionRateVariable = currentDensity * molarVolume \
... / (charge * faradaysConstant)
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Build the extension velocity variable vext. The extension velocity uses the extensionEquation to spread
the velocity at the interface to the rest of the domain.

>>> extensionVelocityVariable = CellVariable(
... name=’extension velocity’,
... mesh=mesh,
... value=depositionRateVariable)

Using the variables created above the governing equations will be built. The governing equation for surfactant
conservation is given by,

θ̇ = Jvθ + kciθ(1− θ)

where θ is the coverage of catalyst at the interface, J is the curvature of the interface, v is the normal velocity
of the interface, ciθ is the concentration of catalyst in the bulk at the interface. The value k is given by an
empirical function of overpotential,

k = k0 + k3η
3

The above equation is represented by the AdsorbingSurfactantEquation in FiPy:

>>> from fipy.models.levelSet.surfactant.adsorbingSurfactantEquation \
... import AdsorbingSurfactantEquation
>>> surfactantEquation = AdsorbingSurfactantEquation(
... surfactantVar=catalystVar,
... distanceVar=distanceVar,
... bulkVar=bulkCatalystVar,
... rateConstant=rateConstant0 \
... + rateConstant3 * overpotential**3)

The variable φ is advected by the advectionEquation given by,

∂φ

∂t
+ vext|∇φ| = 0

and is set up with the following commands:

>>> from fipy.models.levelSet.advection.higherOrderAdvectionEquation \
... import buildHigherOrderAdvectionEquation
>>> advectionEquation = buildHigherOrderAdvectionEquation(
... advectionCoeff=extensionVelocityVariable)

The diffusion of metal ions from the far field to the interface is governed by,

∂cm
∂t

= ∇ ·D∇cm

where,

D =

Dm when φ > 0,

0 when φ ≤ 0

The following boundary condition applies at φ = 0,

Dn̂ · ∇c =
v

Ω
.

The MetalIonDiffusionEquation is set up with the following commands.
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>>> from fipy.boundaryConditions.fixedValue import FixedValue
>>> from fipy.models.levelSet.electroChem.metalIonDiffusionEquation \
... import buildMetalIonDiffusionEquation
>>> metalEquation = buildMetalIonDiffusionEquation(
... ionVar=metalVar,
... distanceVar=distanceVar,
... depositionRate=depositionRateVariable,
... diffusionCoeff=metalDiffusionCoefficient,
... metalIonMolarVolume=molarVolume,
... )

>>> metalEquationBCs = FixedValue(faces=mesh.getFacesTop(), value=bulkMetalConcentration)

The SurfactantBulkDiffusionEquation solves the bulk diffusion of a species with a source term for the
jump from the bulk to an interface. The governing equation is given by,

∂c

∂t
= ∇ ·D∇c

where,

D =

Dθ when φ > 0

0 when φ ≤ 0

The jump condition at the interface is defined by Langmuir adsorption. Langmuir adsorption essentially
states that the ability for a species to jump from an electrolyte to an interface is proportional to the
concentration in the electrolyte, available site density and a jump coefficient. The boundary condition at
φ = 0 is given by,

Dn̂ · ∇c = −kc(1− θ).

The SurfactantBulkDiffusionEquation is set up with the following commands.

>>> from fipy.models.levelSet.surfactant.surfactantBulkDiffusionEquation \
... import buildSurfactantBulkDiffusionEquation
>>> bulkCatalystEquation = buildSurfactantBulkDiffusionEquation(
... bulkVar=bulkCatalystVar,
... distanceVar=distanceVar,
... surfactantVar=catalystVar,
... diffusionCoeff=catalystDiffusion,
... rateConstant=rateConstant0 * siteDensity
... )

>>> catalystBCs = FixedValue(faces=mesh.getFacesTop(), value=catalystConcentration)

If running interactively, create viewers.

>>> if __name__ == ’__main__’:
... try:
... from fipy.viewers.mayaviViewer.mayaviSurfactantViewer import MayaviSurfactantViewer
... viewers = (
... MayaviSurfactantViewer(distanceVar,
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... catalystVar.getInterfaceVar(),

... zoomFactor=1e6,

... limits={ ’datamax’ : 1.0, ’datamin’ : 0.0 },

... smooth=1),)

... except:

... from fipy.viewers import make

... viewers = (

... make(distanceVar, limits={ ’datamin’ :-1e-9 , ’datamax’ : 1e-9 }),

... make(catalystVar.getInterfaceVar()))

... else:

... viewers = ()

The levelSetUpdateFrequency defines how often to call the distanceEquation to reinitialize the
distanceVariable to a distance function.

>>> levelSetUpdateFrequency = int(0.8 * narrowBandWidth \
... / (cellSize * cflNumber * 2))

The following loop runs for numberOfSteps time steps. The time step is calculated with the CFL number
and the maximum extension velocity. v to vext throughout the whole domain using ∇φ · ∇vext = 0.

>>> for step in range(numberOfSteps):
...
... for viewer in viewers:
... viewer.plot()
...
... if step % levelSetUpdateFrequency == 0:
... distanceVar.calcDistanceFunction()
...
... extensionVelocityVariable.setValue(depositionRateVariable())
...
... distanceVar.updateOld()
... catalystVar.updateOld()
... metalVar.updateOld()
... bulkCatalystVar.updateOld()
... distanceVar.extendVariable(extensionVelocityVariable)
... dt = cflNumber * cellSize / max(extensionVelocityVariable)
... advectionEquation.solve(distanceVar, dt=dt)
... surfactantEquation.solve(catalystVar, dt=dt)
... metalEquation.solve(var=metalVar, dt=dt,
... boundaryConditions=metalEquationBCs)
... bulkCatalystEquation.solve(var=bulkCatalystVar, dt=dt,
... boundaryConditions=catalystBCs)

The following is a short test case. It uses saved data from a simulation with 5 time steps. It is not a test for
accuracy but a way to tell if something has changed or been broken.

>>> import os
>>> import examples.levelSet.electroChem
>>> filepath = os.path.join(examples.levelSet.electroChem.__path__[0],
... ’test.gz’)
>>> from fipy.tools import numerix
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>>> print catalystVar.allclose(numerix.array(numerix.loadtxt(filepath)), rtol=1e-4)
1

>>> if __name__ == ’__main__’:
... raw_input(’finished’)



Cahn-Hilliard Examples

11.1 Module examples.cahnHilliard.inputTanh1D

This example solves the Cahn-Hilliard equation given by,

∂φ

∂t
= ∇ ·D∇

(
∂f

∂φ
− ε2∇2φ

)
where the free energy functional is given by,

f =
a2

2
φ2(1− φ)2

The Cahn-Hilliard equation can be rewritten in the following form,

∂φ

∂t
= ∇ ·D

(
∂2f

∂φ2
∇φ− ε2∇3φ

)
The above form of the equation makes the non-linearity part of the diffusion coefficient for the first term on
the RHS. This is the correct way to express the equation to FiPy. We solve the problem on a 1D mesh

>>> L = 40.
>>> nx = 1000
>>> dx = L / nx
>>> from fipy.meshes.grid1D import Grid1D
>>> mesh = Grid1D(dx=dx, nx=nx)

and create the solution variable

>>> from fipy.variables.cellVariable import CellVariable
>>> var = CellVariable(
... name="phase field",
... mesh=mesh,
... value=1)

The boundary conditions for this problem are

φ =
1
2

∂2φ

∂x2
= 0

 on x = 0

and

147
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φ = 1

∂2φ

∂x2
= 0

 on x = L

or

>>> from fipy.boundaryConditions.fixedValue import FixedValue
>>> from fipy.boundaryConditions.nthOrderBoundaryCondition \
... import NthOrderBoundaryCondition
>>> BCs = (
... FixedValue(faces=mesh.getFacesRight(), value=1),
... FixedValue(faces=mesh.getFacesLeft(), value=.5),
... NthOrderBoundaryCondition(faces=mesh.getFacesLeft(), value=0, order=2),
... NthOrderBoundaryCondition(faces=mesh.getFacesRight(), value=0, order=2))

Using

>>> asq = 1.0
>>> epsilon = 1
>>> diffusionCoeff = 1

we create the Cahn-Hilliard equation:

>>> faceVar = var.getArithmeticFaceValue()
>>> freeEnergyDoubleDerivative = asq * ( 1 - 6 * faceVar * (1 - faceVar))

>>> from fipy.terms.implicitDiffusionTerm import ImplicitDiffusionTerm
>>> from fipy.terms.transientTerm import TransientTerm
>>> diffTerm2 = ImplicitDiffusionTerm(
... coeff=diffusionCoeff * freeEnergyDoubleDerivative)
>>> diffTerm4 = ImplicitDiffusionTerm(coeff=(diffusionCoeff, epsilon**2))
>>> eqch = TransientTerm() == diffTerm2 - diffTerm4

>>> from fipy.solvers.linearLUSolver import LinearLUSolver
>>> solver = LinearLUSolver(tolerance=1e-15, iterations=100)

The solution to this 1D problem over an infinite domain is given by,

φ(x) =
1

1 + exp
(
−aεx

)
or

>>> from fipy.tools import numerix
>>> a = numerix.sqrt(asq)
>>> answer = 1 / (1 +
... numerix.exp(-a * (mesh.getCellCenters()[:,0]) / epsilon))

If we are running interactively, we create a viewer to see the results
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>>> if __name__ == ’__main__’:
... from fipy.viewers import make
... viewer = make(vars=var,
... limits={’datamin’: 0., ’datamax’: 1.0})
... viewer.plot()

We iterate the solution to equilibrium and, if we are running interactively, we update the display and output
data about the progression of the solution

>>> dexp=-5
>>> for step in range(100):
... dt = numerix.exp(dexp)
... dt = min(10, dt)
... dexp += 0.5
... eqch.solve(var=var, boundaryConditions=BCs, solver=solver, dt=dt)
... if __name__ == ’__main__’:
... diff = abs(answer - numerix.array(var))
... maxarg = numerix.argmax(diff)
... print ’maximum error:’,diff[maxarg]
... print ’element id:’,maxarg
... print ’value at element ’,maxarg,’ is ’,var[maxarg]
... print ’solution value’,answer[maxarg]
...
... viewer.plot()

We compare the analytical solution with the numerical result,

>>> print var.allclose(answer, atol=1e-4)
1





Fluid Flow Examples

12.1 Module examples.flow.stokesCavity

This example is an implementation of a rudimentary Stokes solver. It solves the Navier-Stokes equation in
the viscous limit,

∇µ · ∇~u = ∇p

and the continuity equation,
∇ · ~u = 0

where ~u is the fluid velocity, p is the pressure and µ is the viscosity. The domain in this example is a square
cavity of unit dimensions with a moving lid of unit speed. This example uses the SIMPLE algorithm with
Rhie-Chow interpolation to solve the pressure-momentum coupling. Some of the details of the algorithm will
be highlighted below but a good reference for this material is Ferziger and Perić [35]. The solution has a high
degree of error close to the corners of the domain for the pressure but does a reasonable job of predicting the
velocities away from the boundaries. A number of aspects of FiPy need to be improved to have a first class
flow solver. These include, higher order spatial diffusion terms, proper wall boundary conditions, improved
mass flux evaluation and extrapolation of cell values to the boundaries using gradients. In the table below a
comparison is made with the Dolfyn open source code on a 100 by 100 grid. The table shows the frequency
of values that fall within the given error confidence bands. Dolfyn has the added features described above.
When these features are switched off the results of Dolfyn and FiPy are identical.

% frequency of cells x-velocity error (%) y-velocity error (%) pressure error (%)
90 < 0.1 < 0.1 < 5
5 0.1 to 0.6 0.1 to 0.3 5 to 11
4 0.6 to 7 0.3 to 4 11 to 35
1 7 to 96 4 to 80 35 to 179
0 > 96 > 80 > 179

To start, some parameters are declared.

>>> L = 1.0
>>> N = 50
>>> dL = L / N
>>> viscosity = 1.
>>> pressureRelaxation = 0.2
>>> velocityRelaxation = 0.5
>>> if __name__ == ’__main__’:
... sweeps = 300
... else:
... sweeps = 5

Build the mesh.
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>>> from fipy.meshes.grid2D import Grid2D
>>> mesh = Grid2D(nx=N, ny=N, dx=dL, dy=dL)

Declare the variables.

>>> from fipy.variables.cellVariable import CellVariable
>>> pressure = CellVariable(mesh=mesh, name=’pressure’)
>>> pressureCorrection = CellVariable(mesh=mesh)
>>> xVelocity = CellVariable(mesh=mesh, name=’X velocity’)
>>> yVelocity = CellVariable(mesh=mesh, name=’Y velocity’)

The velocity is required as a VectorFaceVariable for calculating the mass flux. This is a somewhat clumsy
aspect of the FiPy interface that needs improvement.

>>> from fipy.variables.vectorFaceVariable import VectorFaceVariable
>>> velocity = VectorFaceVariable(mesh=mesh)

Build the Stokes equations.

>>> from fipy.terms.implicitDiffusionTerm import ImplicitDiffusionTerm
>>> xVelocityEq = ImplicitDiffusionTerm(coeff=viscosity) - pressure.getGrad().dot([1,0])
>>> yVelocityEq = ImplicitDiffusionTerm(coeff=viscosity) - pressure.getGrad().dot([0,1])

In this example the SIMPLE algorithm is used to couple the pressure and momentum equations. Let us
assume we have solved the discretized momentum equations using a guessed pressure field p∗ to obtain
a velocity field ~u∗. We would like to somehow correct these initial fields to satisfy both the discretized
momentum and continuity equations. We now try to correct these initial fields with a correction such that
~u = ~u∗+~u′ and p = p∗+p′, where ~u and p now satisfy the momentum and continuity equations. Substituting
the exact solution into the equations we obtain,

∇µ · ∇~u′ = ~p′

and
∇ · ~u∗ +∇ · ~u′ = 0

We now use the discretized form of the equations to write the velocity correction in terms of the pressure
correction. The discretized form of the above equation is,

aP~u
′
P =

∑
f

aA~u
′
A − VP (∇p′)P

where notation from section 3.4 is used. The SIMPLE algorithm drops the second term in the above equation
to leave,

~u′P = −VP (∇p′)P
aP

By substituting the above expression into the continuity equations we obtain the pressure correction equation,

∇VP
aP
· ∇p′ = ∇ · ~u∗

In the discretized version of the above equation VP /aP is approximated at the face by AfdAP /(aP )f . In FiPy
the pressure correction equation can be written as,
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>>> ap = CellVariable(mesh=mesh)
>>> coeff = mesh._getFaceAreas() * mesh._getCellDistances() / ap.getArithmeticFaceValue()
>>> pressureCorrectionEq = ImplicitDiffusionTerm(coeff=coeff) - velocity.getDivergence()

Set up the no-slip boundary conditions

>>> from fipy.boundaryConditions.fixedValue import FixedValue
>>> bcs = (FixedValue(faces=mesh.getFacesLeft(), value=0),
... FixedValue(faces=mesh.getFacesRight(), value=0),
... FixedValue(faces=mesh.getFacesBottom(), value=0),)
>>> bcsX = bcs + (FixedValue(faces=mesh.getFacesTop(), value=1),)
>>> bcsY = bcs + (FixedValue(faces=mesh.getFacesTop(), value=0),)

Set up the viewers,

>>> if __name__ == ’__main__’:
... from fipy.viewers import make
... viewer = make(vars=(pressure, xVelocity, yVelocity, velocity))

Below, we iterate for a set number of sweeps. We use the sweep() method instead of solve() because
we require the residual for output. We also use the cacheMatrix(), getMatrix(), cacheRHSvector()
and getRHSvector() because both the matrix and RHS vector are required by the SIMPLE algorithm.
Additionally, the sweep() method is passed an underRelaxation factor to relax the solution. This argument
cannot be passed to solve().

>>> for sweep in range(sweeps):
...
... ## solve the Stokes equations to get starred values
... xVelocityEq.cacheMatrix()
... xres = xVelocityEq.sweep(var=xVelocity,
... boundaryConditions=bcsX,
... underRelaxation=velocityRelaxation)
... xmat = xVelocityEq.getMatrix()
...
... yres = yVelocityEq.sweep(var=yVelocity,
... boundaryConditions=bcsY,
... underRelaxation=velocityRelaxation)
...
... ## update the ap coefficient from the matrix diagonal
... ap[:] = -xmat.takeDiagonal()
...
... ## update the face velocities based on starred values
... velocity[:,0] = xVelocity.getArithmeticFaceValue()
... velocity[:,1] = yVelocity.getArithmeticFaceValue()
... for id in mesh.getExteriorFaces():
... velocity[id,:] = 0.
...
... ## solve the pressure correction equation
... pressureCorrectionEq.cacheRHSvector()
... pres = pressureCorrectionEq.sweep(var=pressureCorrection)
... rhs = pressureCorrectionEq.getRHSvector()
...
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... ## update the pressure using the corrected value but hold one cell fixed

... pressure.setValue(pressure + pressureRelaxation * \

... (pressureCorrection - pressureCorrection[0]))

... ## update the velocity using the corrected pressure

... xVelocity.setValue(xVelocity - pressureCorrection.getGrad()[:,0] / \

... ap * mesh.getCellVolumes())

... yVelocity.setValue(yVelocity - pressureCorrection.getGrad()[:,1] / \

... ap * mesh.getCellVolumes())

...

... if __name__ == ’__main__’:

... if sweep%1 == 0:

... print ’sweep:’,sweep,’, x residual:’,xres, \

... ’, y residual’,yres, \

... ’, p residual:’,pres, \

... ’, continuity:’,max(abs(rhs))

...

... viewer.plot()
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Test values in the last cell.

>>> from fipy.tools import numerix
>>> numerix.allclose(pressure[-1], 145.233883763)
1
>>> numerix.allclose(xVelocity[-1], 0.24964673696)
1
>>> numerix.allclose(yVelocity[-1], -0.164498041783)
1





Converting from FiPy 0.1 to FiPy 1.0

13.1 Module examples.update0_1to1_0

The syntax of FiPy scripts has changed considerably between version 0.1 and version 1.0. We have incre-
mented the full version-number to stress that previous scripts are incompatible. We strongly believe that
these changes are for the better, resulting in easier code to write and read as well as slightly improved
efficiency, but we realize that this represents an inconvenience to our users that have already written scripts
of their own. We will strive to avoid any such incompatible changes in the future.
All examples included with version 1.0 have been updated to use the new syntax, but any scripts you have
written for FiPy 0.1 will need to be updated to work with FiPy 1.0. As a tutorial for updating your scripts,
we will walk through updating the file examples/convection/exponential1D/input.py from FiPy 0.1. If
you attempt to run that script with FiPy 1.0, the script will fail and you will see the errors shown below:

This example solves the steady-state convection-diffusion equation given by:

∇ · (D∇φ+ ~uφ) = 0

with coefficients D = 1 and ~u = (10, 0), or

>>> diffCoeff = 1.
>>> convCoeff = (10.,0.)

We define a 1D mesh

>>> L = 10.
>>> nx = 1000
>>> ny = 1
>>> from fipy.meshes.grid2D import Grid2D
>>> mesh = Grid2D(L / nx, L / ny, nx, ny)

and impose the boundary conditions

φ =

0 at x = 0,

1 at x = L,

or

>>> valueLeft = 0.
>>> valueRight = 1.
>>> from fipy.boundaryConditions.fixedValue import FixedValue
>>> from fipy.boundaryConditions.fixedFlux import FixedFlux
>>> boundaryConditions = (
... FixedValue(mesh.getFacesLeft(), valueLeft),

157



158 13. Converting from FiPy 0.1 to FiPy 1.0

... FixedValue(mesh.getFacesRight(), valueRight),

... FixedFlux(mesh.getFacesTop(), 0.),

... FixedFlux(mesh.getFacesBottom(), 0.)

... )

The solution variable is initialized to valueLeft:

>>> from fipy.variables.cellVariable import CellVariable
>>> var = CellVariable(
... name = "concentration",
... mesh = mesh,
... value = valueLeft)

The SteadyConvectionDiffusionScEquation object is used to create the equation. It needs to be passed
a convection term instantiator as follows:

>>> from fipy.terms.exponentialConvectionTerm import ExponentialConvectionTerm
>>> from fipy.solvers.linearCGSSolver import LinearCGSSolver
>>> from fipy.equations.stdyConvDiffScEquation import SteadyConvectionDiffusionScEquation
Traceback (most recent call last):
...
ImportError: No module named equations.stdyConvDiffScEquation
>>> eq = SteadyConvectionDiffusionScEquation(
... var = var,
... diffusionCoeff = diffCoeff,
... convectionCoeff = convCoeff,
... solver = LinearCGSSolver(tolerance = 1.e-15, steps = 2000),
... convectionScheme = ExponentialConvectionTerm,
... boundaryConditions = boundaryConditions
... )
Traceback (most recent call last):
...
NameError: name ’SteadyConvectionDiffusionScEquation’ is not defined

More details of the benefits and drawbacks of each type of convection term can be found in the numerical
section of the manual. Essentially the ExponentialConvectionTerm and PowerLawConvectionTerm will
both handle most types of convection diffusion cases with the PowerLawConvectionTerm being more efficient.
We iterate to equilibrium

>>> from fipy.iterators.iterator import Iterator
>>> it = Iterator((eq,))
Traceback (most recent call last):
...
NameError: name ’eq’ is not defined
>>> it.timestep()
Traceback (most recent call last):
...
NameError: name ’it’ is not defined

and test the solution against the analytical result

φ =
1− exp(−uxx/D)
1− exp(−uxL/D)
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or

>>> axis = 0
>>> x = mesh.getCellCenters()[:,axis]
>>> from fipy.tools import numerix
>>> CC = 1. - numerix.exp(-convCoeff[axis] * x / diffCoeff)
>>> DD = 1. - numerix.exp(-convCoeff[axis] * L / diffCoeff)
>>> analyticalArray = CC / DD
>>> numerix.allclose(analyticalArray, var, rtol = 1e-10, atol = 1e-10)
0

If the problem is run interactively, we can view the result:

>>> if __name__ == ’__main__’:
... from fipy.viewers.grid2DGistViewer import Grid2DGistViewer
Traceback (most recent call last):
...
ImportError: No module named grid2DGistViewer

... viewer = Grid2DGistViewer(var)

... viewer.plot()

We see that a number of errors are thrown:

• ImportError: No module named equations.stdyConvDiffScEquation

• NameError: name ’SteadyConvectionDiffusionScEquation’ is not defined

• NameError: name ’eq’ is not defined

• NameError: name ’it’ is not defined

• ImportError: No module named grid2DGistViewer

As is usually the case with computer programming, many of these errors are caused by earlier errors. Let
us update the script, section by section:
Although no error was generated by the use of Grid2D, FiPy 1.0 supports a true 1D mesh class, so we
instantiate the mesh as

>>> L = 10.
>>> nx = 1000
>>> from fipy.meshes.grid1D import Grid1D
>>> mesh = Grid1D(dx = L / nx, nx = nx)

The Grid2D class with ny = 1 still works perfectly well for 1D problems, but the Grid1D class is slightly
more efficient, and it makes the code clearer when a 1D geometry is actually desired.
Because the mesh is now 1D, we must update the convection coefficient vector to be 1D as well

>>> diffCoeff = 1.
>>> convCoeff = (10.,)

The FixedValue boundary conditions at the left and right are unchanged, but a Grid1D mesh does not even
have top and bottom faces:
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>>> valueLeft = 0.
>>> valueRight = 1.
>>> from fipy.boundaryConditions.fixedValue import FixedValue
>>> boundaryConditions = (
... FixedValue(mesh.getFacesLeft(), valueLeft),
... FixedValue(mesh.getFacesRight(), valueRight))

The creation of the solution variable is unchanged:

>>> from fipy.variables.cellVariable import CellVariable
>>> var = CellVariable(name = "concentration",
... mesh = mesh,
... value = valueLeft)

The biggest change between FiPy 0.1 and FiPy 1.0 is that Equation objects no longer exist at all. Instead,
Term objects can be simply added, subtracted, and equated to assemble an equation. Where before the
assembly of the equation occurred in the black-box of SteadyConvectionDiffusionScEquation, we now
assemble it directly:

>>> from fipy.terms.implicitDiffusionTerm import ImplicitDiffusionTerm
>>> diffTerm = ImplicitDiffusionTerm(coeff = diffCoeff)

>>> from fipy.terms.exponentialConvectionTerm import ExponentialConvectionTerm
>>> eq = diffTerm + ExponentialConvectionTerm(coeff = convCoeff,
... diffusionTerm = diffTerm)

One thing that SteadyConvectionDiffusionScEquation took care of automatically was that a
ConvectionTerm must know about any DiffusionTerm in the equation in order to calculate a Peclet num-
ber. Now, the DiffusionTerm must be explicitly passed to the ConvectionTerm in the diffusionTerm
parameter.
The Iterator class still exists, but it is no longer necessary. Instead, the solution to an implicit steady-state
problem like this can simply be obtained by telling the equation to solve itself (with an appropriate solver
if desired, although the default LinearPCGSolver is usually suitable):

>>> from fipy.solvers.linearCGSSolver import LinearCGSSolver
>>> eq.solve(var = var,
... solver = LinearCGSSolver(tolerance = 1.e-15, steps = 2000),
... boundaryConditions = boundaryConditions)

Note

In version 0.1, the Equation object had to be told about the Variable, Solver, and BoundaryCondition
objects when it was created (and it, in turn, passed much of this information to the Term objects in order to
create them). In version 1.0, the Term objects (and the equation assembled from them) are abstract. The
Variable, Solver, and BoundaryCondition objects are only needed by the solve() method (and, in fact,
the same equation could be used to solve different variables, with different solvers, subject to different
boundary conditions, if desired).

The analytical solution is unchanged, and we can test as before

>>> numerix.allclose(analyticalArray, var, rtol = 1e-10, atol = 1e-10)
1
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or we can use the slightly simpler syntax

>>> print var.allclose(analyticalArray, rtol = 1e-10, atol = 1e-10)
1

The ImportError: No module named grid2DGistViewer results because the Viewer classes have been
moved and renamed. This error could be resolved by changing the import statement appropriately:

>>> if __name__ == ’__main__’:
... from fipy.viewers.gistViewer.gist1DViewer import Gist1DViewer
... viewer = Gist1DViewer(vars = var)
... viewer.plot()

Instead, rather than instantiating a particular Viewer (which you can still do, if you desire), a generic
“factory” method will return a Viewer appropriate for the supplied Variable object(s):

>>> if __name__ == ’__main__’:
... import fipy.viewers
... viewer = fipy.viewers.make(vars = var)
... viewer.plot()

Please do not hesitate to contact us if this example does not help you convert your existing scripts to FiPy
1.0.
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